Skip to main content
Log in

A finite-element/boundary-element method for large-displacement fluid-structure interaction

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We present a combined finite-element/boundary-element method to simulate inflation processes, characterized by a light, folded structure enveloping a viscous fluid. The application of the boundary-element method to approximate the flow allows for automatic evolution of the problem domain according to the kinematic condition. Moreover, it provides an intrinsic mechanism to treat the ubiquitous self-contact, common to inflation problems. We numerically verify that self-contact is indeed prevented and demonstrate the versatility and robustness of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bischoff M, Wall W, Bletzinger K, Ramm E (2004) Models and finite elements for thin-walled structures. In: Encyclopedia of computational mechanics, vol 2 structures. Wiley, New York, pp 59–137

  2. van Brummelen E, Geuzaine P (2010) Fundamentals of fluid–structure interaction. In: Blockley R, Shyy W (eds) Encyclopedia of aerospace engineering. Wiley, New York

    Google Scholar 

  3. Cirak F, Radovitzky R (2005) Lagrangian–eulerian shell–fluid coupling algorithm based on level sets. Comput Struct 83: 491–498

    Article  Google Scholar 

  4. Hsiao G, Wendland W (2004) Boundary Element methods: foundation and error analysis. In: Encyclopedia of computational mechanics, vol 1 fundamentals, Wiley, New York, pp 339–373

  5. Hughes T, Liu W, Zimmermann T (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29: 329–349

    Article  MathSciNet  MATH  Google Scholar 

  6. Johnson A, Tezduyar T (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23: 130–143

    Article  MATH  Google Scholar 

  7. Ladyzhenskaya O (1963) The mathematical theory of viscous incompressible flows, revised english edn, mathematics and its applications. Gordon and Breach, New York

    Google Scholar 

  8. Mayer U, Popp A, Gerstenberger A, Wall W (2010) 3D fluid–structure-contact interaction based on a combined 3D fluid–structure-contact interaction based on a combined XFEM FSI and dual mortar contact approach. Comput Mech 46: 53–67

    Article  MathSciNet  MATH  Google Scholar 

  9. McLean W (2000) Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  10. van Opstal T, van Brummelen E (2012a) Model comparison for inflatables using boundary element techniques. In: Andrade-Campos A, Lopes N, Valente R, Varum H (eds) First ECCOMAS young investigators conference, 155, pp 1–10

  11. van Opstal T, van Brummelen E (2012b) A potential BEM for large-displacement FSI. CASA-Report 12-03, Eindhoven University of Technology, Eindhoven

  12. Power H, Wrobel L (1995) Boundary integral methods in fluid mechanics. Computational Mechanics Publications, Southampton

    MATH  Google Scholar 

  13. Pozrikidis C (1992) Boundary integral and singularity methods for linearized viscous flow. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  14. Saksono P, Dettmer W, Perić D (2007) An adaptive remeshing strategy for flows with moving boundaries and fluid–structure interaction. Int J Numer Methods Eng 71: 1009–1050

    Article  MATH  Google Scholar 

  15. Sathe S, Tezduyar T (2008) Modeling of fluid–structure interactions with the space-time finite elements: contact problems. Comput Mech 43: 51–60

    Article  MathSciNet  MATH  Google Scholar 

  16. Sauter S, Schwab C (2011) Boundary element methods, Springer series in computational mechanics. Springer-Verlag, Berlin

    Google Scholar 

  17. Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70: 58–63

    Article  MATH  Google Scholar 

  18. Takizawa K, Tezduyar T (2011) Multiscale space-time fluid–structure-interaction techniques. Comput Mech 48: 247–267

    Article  MathSciNet  MATH  Google Scholar 

  19. Takizawa K, Spielman T, Tezduyar T (2011) Space-time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48: 345–364

    Article  MATH  Google Scholar 

  20. Tezduyar T (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28: 1–44

    Article  MathSciNet  MATH  Google Scholar 

  21. Veerapaneni S, Rahimiany A, Biros G, Zorin D (2010) A fast algorithm for simulating vesicle flows in three dimensions. J Comput Phys 230(14): 5610–5634

    Article  Google Scholar 

  22. White F (2006) Viscous fluid flow. McGraw-Hill,

  23. Zienkiewicz O, Kelly D, Bettess P (1979) Marriage à à la mode–the best of both worlds (finite elements and boundary integrals). Wiley, London, pp 59–80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. van Opstal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Opstal, T.M., van Brummelen, E.H., de Borst, R. et al. A finite-element/boundary-element method for large-displacement fluid-structure interaction. Comput Mech 50, 779–788 (2012). https://doi.org/10.1007/s00466-012-0794-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0794-7

Keywords

Navigation