Skip to main content

Practical Contributions on the Fictitious Domain Method for a Fluid–Structure Interaction Problem

  • Conference paper
  • First Online:
Boundary and Interior Layers, Computational and Asymptotic Methods BAIL 2018

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 135))

  • 273 Accesses

Abstract

The present study deals with the numerical simulation of a fluid–structure interaction problem. The fluid is represented by the incompressible Navier–Stokes equations and the structure is described by an ODE depending on two degrees of freedom. A recent fictitious domain method on a fixed mesh is considered. For that choice, we provide several tricks to meet the difficulties arising from the fluid–structure interaction. All developed tools can be applied to very general geometries and deformations of the structure. Finally, numerical simulations are conducted in a realistic aeronautics configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alauzet, F., Fabrèges, B., Fernández, M.A., Landajuela, M.: Nitsche–XFEM for the coupling of an incompressible fluid with immersed thin–walled structures. Comput. Methods Appl. Mech. Eng. 301, 300–335 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Angot, P., Bruneau, C.-H., Fabrie, P.: A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math. 81(4), 497–520 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Bordas, S.P.A., Burman, E., Larson, M.G., Olshanskii, M.A.: Geometrically Unfitted Finite Element Methods and Applications. Springer, Berlin (2017)

    MATH  Google Scholar 

  5. Court, S., Fournié, M., Lozinski, A.: A fictitious domain approach for the Stokes problem based on the extended finite element method. Int. J. Numer. Methods Fluids 74(2), 73–99 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Delay, G.: Étude d’un problème d’interaction fluide–structure: Modélisation, Analyse, Stabilisation et Simulations numériques. Ph.D. thesis. Université de Toulouse (2018)

    Google Scholar 

  7. Delay, G.: Existence of strong solutions to a fluid–structure system with a structure given by a finite number of parameters. Available on https://www.math.univ-toulouse.fr/~gdelay/ (2020)

  8. Dillon, R.H., Li, Z.: An introduction to the immersed boundary and the immersed interface methods — from Interfaces problems and methods in biological and physical flows. Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. 17, 1–67 (2009)

    Google Scholar 

  9. Dolbow, J., Moës, N., Belytschko, T.: An extended finite element method for modeling crack growth with frictional contact. Comput. Methods Appl. Mech. Eng. 190(51–52), 6825–6846 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Fernández, M.A., Mullaert, J., Vidrascu, M.: Generalized Robin–Neumann explicit coupling schemes for incompressible fluid–structure interaction: stability analysis and numerics. Int. J. Numer. Methods Eng. 101(3), 199–229 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Fournié, M., Lozinski, A.: Stability and optimal convergence of unfitted extended finite element methods with Lagrange multipliers for the stokes equations. In: Bordas, S.P.A., Burman, E., Larson, M.G., Olshanskii, M.A. (eds.) Geometrically Unfitted Finite Element Methods and Applications, pp. 143–182. Springer, Berlin (2017)

    MATH  Google Scholar 

  12. Hou, G., Wang, J., Layton, A.: Numerical methods for fluid–structure interaction – a review. Commun. Comput. Phys. 12(2), 337–377 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Hu, H.H., Patankar, N.A., Zhu, M.Y.: Direct numerical simulations of fluid–solid systems using arbitrary Lagrangian Eulerian technique. J. Comput. Phys. 169, 427–462 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Kamensky, D., Hsu, M.-C., Schillinger, D., Evans, J.A., Aggarwal, A., Bazilevs, Y., Sacks, M.S., Hughes, T.J.R.: An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Comput. Methods Appl. Mech. Eng. 284, 1005–1053 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Landajuela, M., Vidrascu, M., Chapelle, D., Fernández, M.A.: Coupling schemes for the FSI forward prediction challenge: comparative study and validation. Int. J. Numer. Methods Biomed. Eng. 33(4), pp.e02813 (2017)

    Google Scholar 

  16. Lefebvre, A.: Numerical simulation of gluey particles. M2AN Math. Model. Numer. Anal. 43(1), 53–80 (2009)

    Google Scholar 

  17. Massing, A., Larson, M.G., Logg, A., Rognes, M.E.: A Nitsche–based cut finite element method for a fluid–structure interaction problem. Commun. Appl. Math. Comput. Sci. 10(2), 97–120 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Maury, B.: Numerical analysis of a finite element/volume penalty method. SIAM Numer. Anal. 47(2), 1126–1148 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 476–517 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Renard, Y., Pommier, J.: Getfem finite element library. http://home.gna.org/getfem/

  22. Richter, T.: A monolitic geometric multigrid solver for fluid–structure interactions in ALE formulation. Int. J. Numer. Methods Eng. 104(5), 372–390 (2015)

    MATH  Google Scholar 

  23. Sethian, J.A.: Level Set Methods – From Volume 3 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (1999)

    Google Scholar 

Download references

Acknowledgements

The first author has been supported by IFSMACS ANR-15-CE40-0010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Delay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Delay, G., Fournié, M. (2020). Practical Contributions on the Fictitious Domain Method for a Fluid–Structure Interaction Problem. In: Barrenechea, G., Mackenzie, J. (eds) Boundary and Interior Layers, Computational and Asymptotic Methods BAIL 2018. Lecture Notes in Computational Science and Engineering, vol 135. Springer, Cham. https://doi.org/10.1007/978-3-030-41800-7_3

Download citation

Publish with us

Policies and ethics