Skip to main content
Log in

Upper bound limit analysis of plates utilizing the C1 natural element method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this article, a novel numerical solution procedure is proposed to evaluate the upper bound limit load multipliers for thin plate problems, which incorporates the C1 natural element method (C1NEM) with a direct iteration algorithm. Due to its remarkable interpolation property to the nodal function and the nodal gradient values, the C1NEM with the C1- continuous trial function is used here to deal with the upper bound limit analysis problem of perfectly rigid-plastic plates. The relevant discrete mathematical programming formulation is established based on the kinematic theorem of plastic limit analysis, and a direct iteration algorithm with the advantages of simple solution formula and easy procedure implementation is presented to solve it. Several representative examples governed by the von Mises yield criterion are investigated. The numerical solutions obtained in this paper are reasonable and satisfactory, and are in good agreement with the previously reported results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hodge PG (1963) Limit analysis of rotationally symmetric plates and shells. Prentice-Hall, New Jersey

    MATH  Google Scholar 

  2. Save MA, Massonnet CE (1972) Plastic analysis and design of plates, shells and disks. North-Holland, Amsterdam

    MATH  Google Scholar 

  3. Zyczkowski M (1981) Combined loadings in the theory of plasticity. Polish Scientific, PWN and Nijhoff

    MATH  Google Scholar 

  4. Xu BY, Liu XS (1985) Plastic limit analysis of structures. China architecture & building Press, Beijing

    Google Scholar 

  5. Lubliner J (1990) Plasticity theory. Macmillan, New York

    MATH  Google Scholar 

  6. Yu MH, Ma GW, Li JC (2009) Structural plasticity limit, shakedown and dynamic plastic analyses of structures. Springer, New York

    Google Scholar 

  7. Hodge PG, Belytschko T (1968) Numerical methods for the limit analysis of plates. J Appl Mech 35(4): 795–802

    Article  Google Scholar 

  8. Nguyen HD (1976) Direct limit analysis via rigid-plastic finite elements. Comput Methods Appl Mech Eng 8(1): 81–116

    Article  MATH  Google Scholar 

  9. Capsoni A, Corradi L (1999) Limit analysis of plates-a finite element formulation. Int J Numer Methods Biomed Eng 8(4): 325–341

    Google Scholar 

  10. Turco E, Caracciolo P (2000) Elasto-plastic analysis of Kirchhoff plates by high simplicity finite elements. Comput Methods Appl Mech Eng 190(5–7): 691–706

    Article  MATH  Google Scholar 

  11. Corradi L, Vena P (2003) Limit analysis of orthotropic plates. Int J Plasticity 19(10): 1543–1566

    Article  MATH  Google Scholar 

  12. Corradi L, Panzeri N (2003) Post-collapse analysis of plates and shells based on a rigid-plastic version of the TRIC element. Comput Methods Appl Mech Eng 192(33–34): 3747–3775

    Article  MATH  Google Scholar 

  13. Tran TN, Kreissig R, Staat M (2009) Probabilistic limit and shakedown analysis of thin plates and shells. Struct Saf 31(1): 1–18

    Article  Google Scholar 

  14. Le CV, Nguyen-Xuan H, Nguyen-Dang H (2010) Upper and lower bound limit analysis of plates using FEM and second-order cone programming. Comput Struct 88(1–2): 65–73

    Article  Google Scholar 

  15. Capsoni A, Vicenteda Silva M (2011) A finite element formulation of Mindlin plates for limit analysis. Int J Numer Methods Biomed Eng 27(1): 143–156

    Article  MathSciNet  MATH  Google Scholar 

  16. Belytschko T, Lu YY, Gu L (1996) Element free Galerkin methods. Int J Numer Methods Eng 37(2): 229–256

    Article  MathSciNet  Google Scholar 

  17. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods FL 20(8–9): 1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  18. Duarte CA, Oden JT (1996) An h-p adaptive method using clouds. Comput Methods Appl Mech Eng 139(1–4): 237–262

    Article  MathSciNet  MATH  Google Scholar 

  19. Atluri SN, Zhu T (1998) A new meshless local Petrov-Galerkin (MLPG) approach in Comput Mech. Comput Mech 22(2): 117–127

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50(2): 435–466

    Article  MATH  Google Scholar 

  21. Liu GR, Gu YT (2001) A point interpolation method for two-dimensional solids. Int J Numer Methods Eng 50(4): 937–951

    Article  MATH  Google Scholar 

  22. Cueto E, Sukumar N, Calvo B, Martinez MA, Cegonino J, Doblar M (2003) Overview and recent advances in natural neighbour Galerkin methods. Arch Comput Methods Eng 10(4): 307–384

    Article  MATH  Google Scholar 

  23. Le CV, Gilbert M, Askes H (2009) Limit analysis of plates using the EFG method and second-order cone programming. Int J Numer Methods Eng 78(13): 1532–1552

    Article  MathSciNet  MATH  Google Scholar 

  24. Le CV, Gilbert M, Askes H (2010) Limit analysis of plates and slabs using a meshless equilibrium formulation. Int J Numer Methods Eng 83(13): 1739–1758

    Article  MathSciNet  MATH  Google Scholar 

  25. Le CV, Askes H, Gilbert M (2010) Adaptive element-free Galerkin method applied to the limit analysis of plates. Comput Methods Appl Mech Eng 199(37–40): 2487–2496

    Article  MathSciNet  MATH  Google Scholar 

  26. Onate E et al (1994) A review of some finite element families for thick and thin plate and shell analysis. In: Onate E (ed) Recent Developments in finite element analysis. CIMNE, Barcelona, pp 98–111

    Google Scholar 

  27. Zienkiewicz OC, Taylor RL (2005) The finite element method. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  28. Barros FB, de Barcellos CS, Duarte CA (2007) p-Adaptive C-k generalized finite element method for arbitrary polygonal clouds. Comput Mech 41(1): 175–187

    Article  MATH  Google Scholar 

  29. Xiang JW, Chen XF, He ZJ, Zhang YH (2008) A new wavelet-based thin plate element using B-spline wavelet on the interval. Comput Mech 41(2): 243–255

    MathSciNet  MATH  Google Scholar 

  30. de Barcellos CS, Mendonca PDR, Duarte CA (2009) A C (k) continuous generalized finite element formulation applied to laminated Kirchhoff plate model. Comput Mech 44(3): 377–393

    Article  MathSciNet  MATH  Google Scholar 

  31. Sukumar N, Moran B (1999) C-1 natural neighbor interpolant for partial differential equations. Numer Methods Part D E 15(4): 417–447

    Article  MathSciNet  MATH  Google Scholar 

  32. Fischer P, Mergheim J, Steinmann P (2010) On the C-1 continuous discretization of non-linear gradient elasticity: a comparison of NEM and FEM based on Bernstein–Bezier patches. Int J Numer Methods Eng 82(10): 1282–1307

    MathSciNet  MATH  Google Scholar 

  33. Rajagopal A, Fischer P, Kuhl E, Steinmann P (2010) Natural element analysis of the Cahn-Hilliard phase-field model. Comput Mech 46(3): 471–493

    Article  MathSciNet  MATH  Google Scholar 

  34. Chen G, Liu YH (2006) Numerical theories and engineering methods for structural limit and shakedown analyses. Science press, Beijing

    Google Scholar 

  35. Sukumar N, Moran B, Belytschko T (1998) The natural element method in solid mechanics. Int J Numer Methods Eng 43(5): 839–887

    Article  MathSciNet  MATH  Google Scholar 

  36. Sukumar N, Moran B, Semenov AY, Belikov VV (2001) Natural neighbour Galerkin methods. Int J Numer Methods Eng 50(1): 1–27

    Article  MathSciNet  MATH  Google Scholar 

  37. Farin G (1990) Surfaces over Dirichlet tessellations. Comput Aided Geom D 7(1–4): 281–292

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang PX, Lu MW, Hwang KC (1991) A mathematical programming algorithm for limit analysis. Acta Mech Solida Sin 23(4): 433–442

    Google Scholar 

  39. Tabbara M, Blacker T, Belytschko T (1994) Finite-element derivative recovery by moving least-square interpolants. Comput Methods Appl Mech Eng 117(1–2): 211–223

    Article  MATH  Google Scholar 

  40. Hopkins HG, Wang AJ (1954) Load-carrying capacities for circular plates of perfectly-plastic material with arbitrary yield condition. J Mech Phys Solids 3(2): 117–129

    Article  Google Scholar 

  41. Melosh RJ (1963) Basis for derivation of matrics for the direct stiffness method. J AIAA 1(7): 1631–1637

    Article  Google Scholar 

  42. Mansfield EH (2000) Collapse pressures for rhombic plates. Int J Mech Sci 42(3): 635–643

    Article  MATH  Google Scholar 

  43. Lowe PG (2002) Collapse pressures for rhombic plates: discussion. Int J Mech Sci 44(9): 2025–2026

    Article  MATH  Google Scholar 

  44. Andersen KD, Christiansen E, Overton ML (1998) Computing limit loads by minimizing a sum of norms. SIAM J Sci Comput 19(3): 1046–1062

    Article  MathSciNet  MATH  Google Scholar 

  45. Fox EN (1974) Limit analysis for plates: exact solution for a clamped square plate of isotropic homogeneous material obeying square yield criterion and loaded by uniform pressure. Philos T R Soc A 277(1265): 121–155

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghua Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, S., Liu, Y. & Chen, S. Upper bound limit analysis of plates utilizing the C1 natural element method. Comput Mech 50, 543–561 (2012). https://doi.org/10.1007/s00466-012-0688-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0688-8

Keywords

Navigation