Skip to main content
Log in

A two-level mesh repartitioning scheme for the displacement-based lower-order finite element methods in volumetric locking-free analyses

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We present an approach for repartitioning existing lower-order finite element mesh based on quadrilateral or triangular elements for the linear and nonlinear volumetric locking-free analysis. This approach contains two levels of mesh repartitioning. The first-level mesh re-partitioning is an h-adaptive mesh refinement for the generation of a refined mesh needed in the second-level mesh coarsening. The second-level mesh coarsening involves a gradient smoothing scheme performed on each pair of adjacent elements selected based on the first-level refined mesh. With the repartitioned mesh and smoothed gradient, the equivalence between the mixed finite element formulation and the displacement-based finite element formulation is established. The extension to nonlinear finite element formulation is also considered. Several linear and non-linear numerical benchmarks are solved and numerical inf-sup tests are conducted to demonstrate the accuracy and stability of the proposed formulation in the nearly incompressible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrade Pires FM, de Souza Neto EA, de la Cuesta Padilla JL (2004) An assessment of the average nodal volume formulation for the analysis of nearly incompressible solids under finite strains. Int J Numer Methods Eng 20: 569–583

    Article  MATH  Google Scholar 

  2. Areias P, Matouš K (2008) Stabilized four-node tetrahedron with nonlocal pressure for modeling hyperelastic materials. J Numer Methods Eng 76: 1185–1201

    Article  MATH  Google Scholar 

  3. Arnold DN, Brezzi F, Franca LP (1984) A stable finite element for the Stokes equations. Calcolo 21: 337–344

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold DN, Brezzi F, Cockburn B, Marini LD (2001) Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J Numer Anal 39: 1749–1770

    Article  MathSciNet  Google Scholar 

  5. Auricchio F, Beiraode Veiga L, Buffam A, Lovadina C, Reali A, Sangalli G (2007) A fully locking-free isogeometric approach for plane linear elasticity problems: a stream function formulation. Comput Methods Appl Mech Eng 197: 160–172

    Article  MATH  Google Scholar 

  6. Bathe KJ (1996) Finite element procedures. Prentice-Hall, New Jersey

    Google Scholar 

  7. Babuška I (1973) The finite element method with Lagrangian multipliers. Numer Math 20: 179–192

    Article  MATH  Google Scholar 

  8. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37: 229–256

    Article  MathSciNet  MATH  Google Scholar 

  9. Belytschko T, Liu WK, Moran B (2001) Nonlinear finite elements for continua and structures, 3rd edn. Wiley, New York

    Google Scholar 

  10. Bonet J, Burton AJ (1998) A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications. Commun Numer Methods Eng 14: 437–449

    Article  MathSciNet  MATH  Google Scholar 

  11. Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods, Srpringer Series in Computational Mathematics Vol. 15. Springer, New York

    Book  Google Scholar 

  12. Chen JS, Wu CT, Pan C (1996) A pressure projection method for nearly incompressible rubber hyperelasticity, Part II: applications. J Appl Mech 63: 869–876

    Article  MATH  Google Scholar 

  13. Chen JS, Yoon S, Wang HP, Liu WK (2000) An improved reproducing kernel particle method for nearly incompressible finite elasticity. Comput Methods Appl Mech Eng 181: 117–145

    Article  MATH  Google Scholar 

  14. Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50: 435–466

    Article  MATH  Google Scholar 

  15. Crouzeiz M, Raviart PA (1973) Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Sér Rouge 7: 33–75

    Google Scholar 

  16. De S, Bathe KJ (2001) Displacement/pressure mixed interpolation in the method of finite spheres. Int J Numer Methods Eng 51: 275–292

    Article  MATH  Google Scholar 

  17. Dolbow J, Belytschko T (1999) Volumetric locking in the element free Galerkin method. Int J Numer Methods Eng 46: 925–942

    Article  MathSciNet  MATH  Google Scholar 

  18. Elguedj T, Bazilevs Y, Calo VM, Hughes TJR (2008) \({\overline{{B}} }\) and \({\overline{{F}} }\) projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements. Comput Methods Appl Mech Eng 197: 2732–2762

    Article  MATH  Google Scholar 

  19. Hansbo P, Larson M (2002) Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Comput Methods Appl Mech Eng 191: 1895–1908

    Article  MathSciNet  MATH  Google Scholar 

  20. Hauret P, Kuhl E, Ortiz M (2007) Diamond elements: a finite element/discrete-mechanics approximation scheme with guaranteed optimal convergence in incompressible elasticity. Int J Numer Methods Eng 72: 253–294

    Article  MathSciNet  MATH  Google Scholar 

  21. Hughes TJR (2000) The finite element method. Prentice-Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  22. Hughes TJR, Franca P, Balestra M (1986) A new finite element formulation for fluid dynamics, V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal order interpolation. Comput Methods Appl Mech Engrg 59: 85–99

    MathSciNet  MATH  Google Scholar 

  23. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194: 4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  24. Krysl P, Zhu B (2008) Locking-free continuum displacement finite elements with nodal integration. Int J Numer Methods Eng 76: 1020–1043

    Article  MathSciNet  MATH  Google Scholar 

  25. Lamichhane BP (2009) Inf-sup stable finite element pairs based on dual meshes and bases for nearly incompressible elasticity. IMA J Numer Anal 29: 404–420

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu WK, Ong JSJ, Uras RA (1986) Finite element stabilization matrices—a unification approach. Comput Methods Appl Mech Eng 53: 13–46

    MathSciNet  Google Scholar 

  27. Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38: 1655–1679

    Article  MathSciNet  MATH  Google Scholar 

  28. Lovadina C, Auricchio F (2003) On the enhanced strain technique for elasticity problems. Comput Struct 81: 777–787

    Article  MathSciNet  Google Scholar 

  29. Malkus DS, Hughes TJR (1978) Mixed finite element methods-reduced and selective integration techniques: a unification of concepts. Comput Methods Appl Mech Eng 15: 63–81

    Article  MATH  Google Scholar 

  30. Oden JT, Kikuchi N, Song YJ (1982) Penalty-finite element methods for the analysis of Stokesian flows. Comput Methods Appl Mech Eng 31: 297–329

    Article  MathSciNet  MATH  Google Scholar 

  31. Ortiz A, Puso MA, Sukumar N (2010) Maximum-Entropy meshfree method for compressible and near-incompressible elasticity. Comput Methods Appl Mech Eng 199: 1859–1871

    Article  MathSciNet  MATH  Google Scholar 

  32. Park CK, Wu CT, Kan CD (2011) On the analysis of dispersion property and stable time step in meshfree method using the generalized meshfree approximation. Finite Elem Anal Des 47: 683–697

    Article  MathSciNet  Google Scholar 

  33. Puso MA, Solberg J (2006) A stabilized nodally integrated tetrahedral. Int J Numer Methods Eng 67: 841–867

    Article  MathSciNet  MATH  Google Scholar 

  34. Simo JC, Hughes T (1986) On the variational foundation of assumed strain methods. ASME J Appl Mech 53: 51–54

    Article  MathSciNet  MATH  Google Scholar 

  35. Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29: 1595–1638

    Article  MathSciNet  MATH  Google Scholar 

  36. Stenberg R (1990) Error analysis of some finite element methods for the Stokes problem. Math Comput 54: 495–508

    Article  MathSciNet  MATH  Google Scholar 

  37. Stevenson AC (1943) Some boundary problems of two-dimensional elasticity. Philos Mag 34: 766–793

    MathSciNet  MATH  Google Scholar 

  38. Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. McGraw-Hill, New York

    MATH  Google Scholar 

  39. Vidal Y, Villon P, Huerta A (2003) Locking in the incompressible limit: pseudo-divergence-free element free Galerkin. Commun Numer Methods Eng 19: 725–735

    Article  MATH  Google Scholar 

  40. Washizu K (1982) Variational methods in elasticity and plasticity, 3rd edn. Pergamon Press, New York

    MATH  Google Scholar 

  41. Wriggers P, Mueller-Hoeppe DS, Loehnert S (2009) Brick elements for finite deformations based on macro-concepts and on inhomogeneous enhancement. Comput Methods Appl Sci 14: 33–48

    Google Scholar 

  42. Wu CT, Hu W (2011) Meshfree enriched simplex elements with strain smoothing for the finite element analysis of compressible and nearly incompressible solids. Comput Methods Appl Mech Eng 200: 2991–3010

    Article  MathSciNet  MATH  Google Scholar 

  43. Wu CT, Koishi M (2009) A meshfree procedure for the microscopic analysis of particle-reinforced rubber compounds. Interact Multiscale Mech 2: 147–169

    Google Scholar 

  44. Wu CT, Park CK, Chen JS (2011) A generalized meshfree approximation for the meshfree analysis of solids. Int J Numer Methods Eng 85: 693–722

    Article  MATH  Google Scholar 

  45. Zienkiewicz OC, Taylor RL (1987) The finite element method, 3rd edn. McGraw-Hill, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. T. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, C.T., Hu, W. A two-level mesh repartitioning scheme for the displacement-based lower-order finite element methods in volumetric locking-free analyses. Comput Mech 50, 1–18 (2012). https://doi.org/10.1007/s00466-011-0665-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0665-7

Keywords

Navigation