Skip to main content
Log in

A novel hybrid isogeometric element based on two-field Hellinger–Reissner principle to alleviate different types of locking

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

In the present work, novel hybrid elements are proposed to alleviate the locking anomaly in non-uniform rational B-spline-based isogeometric analysis (IGA) using a two-field Hellinger–Reissner variational principle. The proposed hybrid elements are derived by adopting the independent interpolation schemes for displacement and stress fields. The key highlight of the present study is the choice and evaluation of higher-order terms for the stress interpolation function to provide a locking-free solution. Furthermore, the present study demonstrates the efficacy of the proposed elements with the treatment of several two-dimensional linear-elastic benchmark problems alongside the conventional single-field IGA, Lagrangian-based finite element analysis (FEA), and hybrid FEA formulation. It is shown that the proposed class of hybrid elements performs effectively for analyzing the nearly incompressible problem domains that are severely affected by volumetric locking along with the thin plate and shell problems where the shear locking is dominant. A better coarse mesh accuracy of the proposed method in comparison with the conventional formulation is demonstrated through various numerical examples. Moreover, the formulation is not restricted to the locking-dominated problem domains but can also be implemented to solve the problems of general form without any special treatment. Thus, the proposed method is robust, most efficient, and highly effective against both shear and volumetric locking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

Abbreviations

FEA:

Finite element analysis

CAD:

Computer-aided design

IGA:

Isogeometric analysis

H-IGA:

Hybrid isogeometric analysis

NURBS:

Non-uniform rational B-spline

H-FEA:

Hybrid finite element analysis

\(N_{i,p}(\xi )\) :

\(p^{\mathrm{th}}\) degree univariate B-spline basis function

\(N_{i,j}^{p,q}(\xi ,\eta )\) :

Bivariate B-spline interpolation function

\(N_{i,j,k}^{p,q,r}(\xi ,\eta ,\zeta )\) :

Trivariate B-spline interpolation function

\(R_{i,p}(\xi )\) :

Univariate NURBS basis function

\(R_{i,j}^{p,q}(\xi ,\eta )\) :

Bivariate NURBS interpolation function

\(R_{i,j,k}^{p,q,r}(\xi ,\eta ,\zeta )\) :

Trivariate NURBS interpolation function

\({\varvec{R}}\) :

Shape function matrix

\({\varvec{P}}\) :

Stress interpolation matrix

\({\varvec{T}}\) :

Transformation matrix

\({\varvec{B}}\) :

Strain-displacement matrix

\({\varvec{K}}\) :

Global stiffness matrix

\({\varvec{K}}_e\) :

Element stiffness matrix

\({\mathcal {U}}\) :

Strain energy of an element domain

\({\mathcal {N}}\) :

Null space of \({\varvec{G}}_e\)

\({\varvec{n}}^0_i\) :

Vector basis of \({\mathcal {N}}\)

\({\mathcal {C}}\) :

Material constitutive tensor

\({\varvec{u}}\) :

Displacement field

\(\delta {\varvec{u}}\) :

Variation of displacement field \({\varvec{u}}\)

\(\varvec{{\mathcal {H}}}\) :

Knot vector along \(\eta \) direction

\(n_{cp}^e\) :

Total number of control points per element

\({\bar{{\varvec{t}}}}\) :

Traction defined on the boundary \(\Gamma _t\)

\(\Omega \) :

Physical space of the problem domain

\({{\hat{\Omega }}}\) :

Parametric space of the domain

\({\tilde{\Omega }}\) :

Master or parent space

\(\Gamma _u\) :

Displacement boundary

\(\Gamma _t\) :

Traction boundary

\(\varvec{\tau }\) :

Cauchy’s stress tensor

\(\varvec{\epsilon }\) :

Small strain tensor

\(\varvec{\tau }_c\) :

Engineering form of stress tensor \(\varvec{\tau }\)

\(\delta \varvec{\tau }_c\) :

Variation of \(\varvec{\tau }_c\)

\({\bar{\varvec{\epsilon }}}_c\) :

Engineering form of strain tensor \(\varvec{\epsilon }\)

\(\varvec{\Xi }\) :

Knot vector along \(\xi \) direction

\({\hat{\varvec{\beta }}}\) :

Vector consisting of the stress parameters

\(\delta {\hat{\varvec{\beta }}}\) :

Vector of stress variation parameters

References

  1. Cottrell J A, Hughes T J R and Bazilevs Y 2009 Isogeomatric analysis: Towards integration of CAD and FEA. John Wiley & Sons Ltd, Chichester, United Kingdom

    Book  Google Scholar 

  2. Hughes T J R, Cottrell J A and Bazilevs Y 2005 Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194: 4135–4195, https://doi.org/10.1016/j.cma.2004.10.008

    Article  MathSciNet  MATH  Google Scholar 

  3. Piegl L and Tiller W 1997 The NURBS book, \(2^{{\rm nd}}\) edition. Springer, New York.

    MATH  Google Scholar 

  4. De Lorenzis L, Wriggers P and Hughes T J R 2014 Isogeometric contact: a review. GAMM-Mitt. 37: 85–123, https://doi.org/10.1002/gamm.201410005

    Article  MathSciNet  MATH  Google Scholar 

  5. Agrawal V and Gautam S S 2020 Varying-order NURBS discretization: An accurate and efficient method for isogeometric analysis of large deformation contact problems. Comput. Methods Appl. Mech. Eng. 367: 113125, https://doi.org/10.1016/j.cma.2020.113125

    Article  MathSciNet  MATH  Google Scholar 

  6. Agrawal V and Gautam S S 2021 NURBS-based isogeometric analysis for stable and accurate peeling computations. Sadhana 46:3, https://doi.org/10.1007/s12046-020-01513-z

  7. Wall W A, Frenzel M A and Cyron C 2008 Isogeometric structural shape optimization. Comput. Methods Appl. Mech. Eng. 197: 2976–2988, https://doi.org/10.1016/j.cma.2008.01.025

    Article  MathSciNet  MATH  Google Scholar 

  8. Gomez H, Hughes T J R, Nogueira X and Calo V M 2010 Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations. Comput. Methods Appl. Mech. Eng. 199: 1828–1840, https://doi.org/10.1016/j.cma.2010.02.010

    Article  MathSciNet  MATH  Google Scholar 

  9. Bazilevs Y and Akkerman I 2010 Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method. J. Comput. Phys., 229: 3402–3414, https://doi.org/10.1016/j.jcp.2010.01.008

    Article  MathSciNet  MATH  Google Scholar 

  10. Hosseini B S, Möller M and Turek S 2015 Isogeometric Analysis of the Navier-Stokes equations with Taylor-Hood B-spline elements. Appl. Math. Comput. 267: 264–281, https://doi.org/10.1016/j.amc.2015.03.104

    Article  MathSciNet  MATH  Google Scholar 

  11. Cottrell J A, Reali A, Bazilevs Y and Hughes T J R 2006 Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng. 195: 5257–5296, https://doi.org/10.1016/j.cma.2005.09.027

    Article  MathSciNet  MATH  Google Scholar 

  12. Benson D J, Hartmann S, Bazilevs Y, Hsu M C and Hughes T J R 2013 Blended isogeometric shells. Comput. Methods Appl. Mech. Eng. 255: 133–146, https://doi.org/10.1016/j.cma.2012.11.020

    Article  MathSciNet  MATH  Google Scholar 

  13. Echter R, Oesterle B and Bischoff M 2013 A hierarchic family of isogeometric shell finite elements. Comput. Methods Appl. Mech. Eng. 254: 170–180, https://doi.org/10.1016/j.cma.2012.10.018

    Article  MathSciNet  MATH  Google Scholar 

  14. Riffnaller-Schiefer A, Augsdörfer U H and Fellner D W 2016 Isogeometric shell analysis with NURBS compatible subdivision surfaces. Appl. Math. Comput. 272: 139–147, https://doi.org/10.1016/j.amc.2015.06.113

    Article  MathSciNet  MATH  Google Scholar 

  15. Hartmann S, Benson D J and Lorenz D 2011 About Isogeometric Analysis and the new NURBS-based Finite Elements in LS-DYNA. \(8^{{\rm th}}\) European LS-DYNA Users Conference (Strasbourg, France, May \(23^{{\rm rd}}\) & \(24^{{\rm th}}\), 2011)

  16. Duval A, Maurin F and Elguedj T 2012 Abaqus user element implementation of NURBS based isogeometric analysis. \(6^{{\rm th}}\) European Congress on Computational Methods in Applied Sciences and Engineering (Vienna, Austria, Sep 10\(^{\text{th}}\) - 14\(^{\text{ th }}\), 2012)

  17. De Falco C, Reali A and Vázquez R 2011 GeoPDEs: A research tool for Isogeometric Analysis of PDEs. Adv. Eng. Softw. 42: 1020–1034, https://doi.org/10.1016/j.advengsoft.2011.06.010

    Article  MATH  Google Scholar 

  18. Dalcin L, Collier N, Vignal P, Côrtes A M A and Calo V M 2016 PetIGA: A framework for high-performance isogeometric analysis. Comput. Methods Appl. Mech. Eng. 308: 151–181, https://doi.org/10.1016/j.cma.2016.05.011

    Article  MathSciNet  MATH  Google Scholar 

  19. Ratnani A 2012 Pigasus:Python for isogeometric analysis and unified simulations. Technical report. URL https://hal.inria.fr/hal-00769225

  20. Echter R and Bischoff M 2010 Numerical efficiency, locking and unlocking of NURBS finite elements. Comput. Methods Appl. Mech. Eng. 199: 374–382, https://doi.org/10.1016/j.cma.2009.02.035

    Article  MATH  Google Scholar 

  21. Babuška I and Suri M 1992 Locking effects in the finite element approximation of elasticity problems. Numer. Math. 62: 439–463, https://doi.org/10.1007/BF01396238

    Article  MathSciNet  MATH  Google Scholar 

  22. Prathap G 1993 The Finite Element Method in Structural Mechanics. Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-94-017-3319-9

  23. Benson D J, Bazilevs Y, Hsu M C and Hughes T J R 2010 Isogeometric shell analysis: The Reissner-Mindlin shell. Comput. Methods Appl. Mech. Eng. 199: 276–289, https://doi.org/10.1016/j.cma.2009.05.011

    Article  MathSciNet  MATH  Google Scholar 

  24. Beirão da Veiga L, Buffa A, Lovadina C, Martinelli M and Sangalli G 2012 An isogeometric method for the Reissner-Mindlin plate bending problem. Comput. Methods Appl. Mech. Eng. 209-212: 45–53, https://doi.org/10.1016/j.cma.2011.10.009

    Article  MathSciNet  MATH  Google Scholar 

  25. Kiendl J, Bletzinger K U, Linhard J and Wüchner R 2009 Isogeometric shell analysis with Kirchhoff-Love elements. Comput. Methods Appl. Mech. Eng. 198: 3902–3914, https://doi.org/10.1016/j.cma.2009.08.013

    Article  MathSciNet  MATH  Google Scholar 

  26. Hosseini S, Remmers J J C, Verhoosel C V and De Borst R 2013 An isogeometric solid-like shell element for nonlinear analysis. Int. J. Numer. Methods Eng. 95: 238–256, https://doi.org/10.1002/nme.4505

    Article  MathSciNet  MATH  Google Scholar 

  27. Combescure A, Bouclier R and Elguedj T 2013 On the development of NURBS-based isogeometric solid shell elements : 2D problems and preliminary extension to 3D. Comput. Mech. 52: 1085–1112, https://doi.org/10.1007/s00466-013-0865-4

    Article  MathSciNet  MATH  Google Scholar 

  28. Hughes T J R, Reali A and Sangalli G 2010 Efficient quadrature for NURBS-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 199: 301–313, https://doi.org/10.1016/j.cma.2008.12.004

    Article  MathSciNet  MATH  Google Scholar 

  29. Elguedj T, Bazilevs Y, Calo V M and Hughes T J R 2008 \(\bar{\text{ B }}\) and \(\bar{\text{ F }}\) bar projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements. Comput. Methods Appl. Mech. Eng. 197: 2732–2762, https://doi.org/10.1016/j.cma.2008.01.012

    Article  MATH  Google Scholar 

  30. Zhang G, Alberdi R and Khandelwal K 2018 On the locking free isogeometric formulations for 3-D curved Timoshenko beams. Finite Elem. Anal. Des. 143: 46–65, https://doi.org/10.1016/j.finel.2018.01.007

    Article  Google Scholar 

  31. Kadapa C, Dettmer W G and Perić D 2016 Subdivision based mixed methods for isogeometric analysis of linear and nonlinear nearly incompressible materials. Comput. Methods Appl. Mech. Eng. 305: 241–270, https://doi.org/10.1016/j.cma.2016.03.013

    Article  MathSciNet  MATH  Google Scholar 

  32. Caseiro J F, Valente R A F, Reali A, Kiendl J, Auricchio F and Alves de Sousa R J 2014 On the Assumed Natural Strain method to alleviate locking in solid-shell NURBS-based finite elements. Comput. Mech. 53: 1341–1353, https://doi.org/10.1007/s00466-014-0978-4

    Article  MathSciNet  MATH  Google Scholar 

  33. Caseiro J F, Valente R A F, Reali A, Kiendl J, Auricchio F and Alves de Sousa R J 2015 Assumed Natural Strain NURBS-based solid-shell element for the analysis of large deformation elasto-plastic thin-shell structures. Comput. Methods Appl. Mech. Eng. 284: 861–880, https://doi.org/10.1016/j.cma.2014.10.037

    Article  MathSciNet  MATH  Google Scholar 

  34. Cardoso R P R and Cesar de Sa J M A 2012 The enhanced assumed strain method for the isogeometric analysis of nearly incompressible deformation of solids. Int. J. Numer. Methods Eng. 92: 56–78, https://doi.org/10.1002/nme.4328

    Article  MathSciNet  MATH  Google Scholar 

  35. Taylor R L 2011 Isogeometric analysis of nearly incompressible solids. Int. J. Numer. Methods Eng. 87: 273–288, https://doi.org/10.1002/nme.3048

    Article  MathSciNet  MATH  Google Scholar 

  36. Echter R 2013 Isogeometric Analysis of Shells. Ph.D. thesis, Universitat Stuttgart, Stuttgart.

  37. Greco L and Cuomo M 2016 An isogeometric implicit G1 mixed finite element for Kirchhoff space rods. Comput. Methods Appl. Mech. Eng. 298: 325–349, https://doi.org/10.1016/j.cma.2015.06.014

    Article  MATH  Google Scholar 

  38. Magisano D, Leonetti L and Garcea G 2021 Isogeometric analysis of 3D beams for arbitrarily large rotations: Locking-free and path-independent solution without displacement DOFs inside the patch. Comput. Methods Appl. Mech. Eng. 373: 113437, https://doi.org/10.1016/j.cma.2020.113437

  39. Kutlu A, Dorduncu M and Rabczuk T 2021 A novel mixed finite element formulation based on the refined zigzag theory for the stress analysis of laminated composite plates. Compos. Struct., 267: 113886, https://doi.org/10.1016/j.compstruct.2021.113886.

  40. Kutlu A 2021 Mixed finite element formulation for bending of laminated beams using the refined zigzag theory. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 235: 1712–1722, https://doi.org/10.1177/14644207211018839

  41. Groh R M J and Weaver P M 2015 On displacement-based and mixed-variational equivalent single layer theories for modelling highly heterogeneous laminated beams. Int. J. Solids Struct., 59: 147–170, https://doi.org/10.1016/j.ijsolstr.2015.01.020

    Article  Google Scholar 

  42. Tessler A 2015 Refined zigzag theory for homogeneous, laminated composite, and sandwich beams derived from Reissner’s mixed variational principle. Meccanica, 50: 2621–2648, https://doi.org/10.1007/s11012-015-0222-0

    Article  MathSciNet  MATH  Google Scholar 

  43. Jog C S 2005 A 27-node hybrid brick and a 21-node hybrid wedge element for structural analysis. Finite Elem. Anal. Des. 41: 1209–1232, https://doi.org/10.1016/j.finel.2004.11.007

    Article  Google Scholar 

  44. Jog C S 2010 Improved hybrid elements for structural analysis. J. Mech. Mater. Struct. 5: 507–528, https://doi.org/10.2140/jomms.2010.5.507

    Article  Google Scholar 

  45. Agrawal M, Nandy A and Jog C S 2019 A hybrid finite element formulation for large-deformation contact mechanics. Comput. Methods Appl. Mech. Eng. 356: 407–434, https://doi.org/10.1016/j.cma.2019.07.017

    Article  MathSciNet  MATH  Google Scholar 

  46. Jog C S and Nandy A 2015 Conservation properties of the trapezoidal rule in linear time domain analysis of acoustics and structures. J. Vib. Acoust. Trans. ASME 137: 021010, https://doi.org/10.1115/1.4029075

  47. Jog C S and Nandy A 2014 Mixed finite elements for electromagnetic analysis. Comput. Math. with Appl. 68: 887–902, https://doi.org/10.1016/j.camwa.2014.08.006

    Article  MathSciNet  MATH  Google Scholar 

  48. Agrawal M and Jog C S 2017 Monolithic formulation of electromechanical systems within the context of hybrid finite elements. Comput. Mech. 59: 443–457, https://doi.org/10.1007/s00466-016-1356-1

    Article  MathSciNet  MATH  Google Scholar 

  49. Roychowdhury A, Nandy A, Jog C S and Pratap R 2014 Hybrid elements for modelling squeeze film effects coupled with structural interactions in vibratory mems devices. CMES 103: 91–110, https://doi.org/10.3970/cmes.2014.103.091

    Article  MathSciNet  MATH  Google Scholar 

  50. Bombarde D S, Nandy A and Gautam S S 2021 A two-field formulation in isogeometric analysis to alleviate locking. In: Advances in Engineering Design, Lecture Notes in Mechanical Engineering: 191–199, https://doi.org/10.1007/978-981-33-4684-0_20

  51. Zienkiewicz O C 2001 Displacement and equilibrium models in the finite element method by B Fraeijs de Veubeke, Chapter 9, Pages 145-197 of Stress Analysis, Edited by O. C. Zienkiewicz and G. S. Holister, Published by John Wiley & Sons, 1965. Int. J. Numer. Methods Eng. 52: 287–342, https://doi.org/10.1002/nme.339

  52. Agrawal V and Gautam S S 2019 IGA: A simplified introduction and implementation details for finite element users. J. Inst. Eng. Ser. C 100: 561–585, https://doi.org/10.1007/s40032-018-0462-6

    Article  Google Scholar 

  53. Pian T H H and Sumihara K 1984 Rational approach for assumed stress finite elements. Int. J. Numer. Methods Eng. 20: 1685–1695

    Article  Google Scholar 

  54. Zou Z, Scott M A, Miao D, Bischoff M, Oesterle B and Dornisch W 2020 An isogeometric Reissner-Mindlin shell element based on Bézier dual basis functions: Overcoming locking and improved coarse mesh accuracy. Comput. Methods Appl. Mech. Eng. 370: 113283, https://doi.org/10.1016/j.cma.2020.113283

  55. Timoshenko S P and Goodier J N 2010 Theory of elasticity. Engineering societies monographs. McGraw-Hill Education (India) Pvt Limited

  56. Spink D 2020 NURBS toolbox by D.M. Spink, https://www.mathworks.com/matlabcentral/fileexchange/26390-nurbs-toolbox-by-d-m-spink

Download references

Acknowledgements

The authors gratefully acknowledge the support from SERB, DST Under the Project IMP/2019/000276 and VSSC, ISRO through MoU No.: ISRO:2020:MOU:NO: 480.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhiraj S Bombarde.

Appendix I: Geometric data for modeling the base coarse mesh for the presented problems

Appendix I: Geometric data for modeling the base coarse mesh for the presented problems

The section is intended to provide the required control points coordinates and the respective weights to construct the initial mesh for the stated problem domains, see tables 1, 2, 3, 4 and 5. The sequence of the refined meshes are modeled by employing the knot insertion or the degree elevation algorithms in one or both direction. For the reader’s interest, the MATLAB codes based on these algorithms can be found in an open-source code library called NURBS toolbox [56]. The subroutines named nrbkntins and nrbdegelev are of particular interest for the refinement strategies.

Table 1 Control point coordinates (\(P_{i,j} = [x \quad y \quad z]\)) for modeling the initial coarse mesh (single element) for a rectangular beam of length L and thickness t with linear basis along \(\xi \) and \(\eta \) direction (weights associated with each control point is 1, knot vector along \(\xi \) and \(\eta \) direction is \(\left[ 0,0,1,1 \right] \)).
Table 2 Control point coordinates and respective weights (\(P_{i,j} = [x \quad y \quad z \quad w]\)) for modeling a single element representing the problem domain of a curved beam with quadratic basis along \(\xi \) and linear basis along \(\eta \) direction, the respective knot vectors are \(\varvec{\Xi }= \left[ 0,0,0,1,1,1 \right] \) and \(\varvec{{\mathcal {H}}} = \left[ 0,0,1,1 \right] \).
Table 3 Control point coordinates (\(P_{i,j} = [x \quad y \quad z]\)) for modeling a single element representing the domain of a Cook’s membrane problem with linear basis along \(\xi \) and \(\eta \) direction (weights associated with all the control points = 1 and knot vector along \(\xi \) and \(\eta \) direction is \(\left[ 0,0,1,1 \right] \)).
Table 4 Control point coordinates (\(P_{i,j} = [x \quad y \quad z]\)) and respective weights (\(w_{i,j}\)) for modeling a quarter portion of a plate with a hole problem using two quadratic elements (two elements along \(\xi \) direction and one element along \(\eta \) direction), knot vectors along \(\xi \) and \(\eta \) are given as; \(\varvec{\Xi }= \left[ 0, 0, 0, 0.5, 1, 1, 1 \right] \), \(\varvec{{\mathcal {H}}} = \left[ 0, 0, 0, 1, 1 ,1 \right] \), radius \(= r = 1\), length \(= L = 4\), weight \(=w^{cp}=0.5(1 + 1/\sqrt{2})\).
Table 5 Control point coordinates (\(P_{i,j} = [x \quad y \quad z]\)) and respective weights (\(w_{i,j}\)) for modeling a quarter portion of a plate with a hole problem using two cubic elements (two elements along \(\xi \) direction and one element along \(\eta \) direction), knot vectors along \(\xi \) and \(\eta \) are given as; \(\varvec{\Xi }= \left[ 0,0, 0, 0, 0.5, 1, 1, 1, 1 \right] \), \(\varvec{{\mathcal {H}}} = \left[ 0, 0,0,0,1, 1, 1,1 \right] \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bombarde, D.S., Gautam, S.S. & Nandy, A. A novel hybrid isogeometric element based on two-field Hellinger–Reissner principle to alleviate different types of locking. Sādhanā 47, 148 (2022). https://doi.org/10.1007/s12046-022-01867-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-022-01867-6

Keywords

Navigation