Skip to main content
Log in

On configurational forces in hyperelastic materials under shock and impact

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In the present work, we discuss configurational forces (also known as material forces) in the context of numerical simulations of short-time dynamical problems with an explicit finite element solver. In extension to the work presented in Kolling and Mueller (Comput Mech 35:392–399, 2005), the fully 3D-case for hyperelastic materials and large strains is shown. The intention of the present paper is the investigation of the influence of inertia effects, which become increasingly important at high strain rates. At first, the dynamical part of configurational forces will be discussed at moderate strain rates. Finally, we use configurational forces in the context of shockwave propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kolling S, Mueller R (2005) On configurational forces in short-time dynamics and their computation with an explicit solver. Comput Mech 35: 392–399

    Article  MATH  Google Scholar 

  2. Eshelby JD (1951) The force on an elastic singularity. Philos Trans R Soc A 244: 87–112

    Article  MATH  MathSciNet  Google Scholar 

  3. Eshelby JD (1970) Energy relations and the energy–momentum-tensor in continuum mechanics. In: Kanninen MF (eds) Inelastic behaviour of solids. McGraw-Hill, New York, pp 75–115

    Google Scholar 

  4. Braun M (1997) Configurational forces induced by finite-element discretization. Proc Estonian Acad Sci Math 46(1/2): 24–31

    MATH  MathSciNet  Google Scholar 

  5. Steinmann P (2000) Application of material forces to hyperelastic fracture mechanics I: Continuum mechanical setting. Int J Solids Struct 37: 7371–7391

    Article  MATH  MathSciNet  Google Scholar 

  6. Steinmann P (2001) Application of material forces to hyperelastostatic fracture mechanics II: computational setting. Int J Solids Struct 38: 5509–5526

    Article  MATH  Google Scholar 

  7. Mueller R, Maugin GA (2002) On material forces and finite element discretizations. Comput Mech 29: 52–60

    Article  MATH  MathSciNet  Google Scholar 

  8. Naeser B, Kaliske M, Mueller R (2007) Material forces for inelastic models at large strain – Application to fracture mechanics. Comput Mech 40: 1005–1013

    Article  MATH  Google Scholar 

  9. Maugin GA (1993) Material inhomogeneities in elasticity. Chapman & Hall, London

    MATH  Google Scholar 

  10. Kienzler R, Herrmann G (2000) Mechanics in material space. Springer, Berlin

    MATH  Google Scholar 

  11. Gurtin ME (2000) Configurational forces as basic concept of continuum physics. Springer, New York

    Google Scholar 

  12. Kolling S, Ackermann D (2003) Applications of material forces in finite element simulations. In: Proceedings of the 4th European LS-DYNA Users Conference, D-II, pp 1–14

  13. Schmidt I, Gross D (1997) The equilibrium shape of an elastically inhomogeneous inclusion. J Mech Phys Solids 45: 1521–1549

    Article  MATH  MathSciNet  Google Scholar 

  14. Gross D, Mueller R, Kolling S (2002) Configurational forces—morphology evolution and finite elements. Mech Res Commun 29: 529–536

    Article  MATH  MathSciNet  Google Scholar 

  15. Hugoniot H (1889) Sur la propagation du mouvement dans les corps et spécialement dansles gaz parfaits. J de L’École Polytech 58: 1–126

    Google Scholar 

  16. Maugin GA (1998) On shock waves and phase transition fronts in continua. ARI 50: 141–150

    Article  Google Scholar 

  17. Maurer D (2002) Simulation of shockwaves in explicit finite element methods. http://people.freenet.de/fetool/shocks.htm

  18. Von Neumann J, Richtmyer RD (1950) A method for the numerical calculation of hydrodynamic shocks. J Appl Phys 21: 232–237

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kaliske.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timmel, M., Kaliske, M., Kolling, S. et al. On configurational forces in hyperelastic materials under shock and impact. Comput Mech 47, 93–104 (2011). https://doi.org/10.1007/s00466-010-0537-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-010-0537-6

Keywords

Navigation