Skip to main content
Log in

Material forces for inelastic models at large strains: application to fracture mechanics

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Elastomeric materials show a wide range of different elastic and inelastic properties. Additionally, this class of materials is subjected to large deformations. Considering all these effects, fracture mechanical investigations are very challenging tasks and cannot be performed with standard approaches. Effects of inhomogeneities and discontinuities such as cracks can be investigated with the so-called material force approach in an efficient and elegant way. For comprehensive investigations of inelastic materials, the complete balance of the material motion problem has to be formulated. In this case, the material volume forces depend on the internal history variables which are required for the inelastic constitutive model. This paper derives a general formulation for rate-dependent and rate-independent inelastic materials based on a multiplicative split of the deformation gradient to cover viscoelastic and elastoplastic materials at finite deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braun M (1997) Configurational forces induced by finite- discretization. In: Proceedings of the estonian academy of sciences, physics, mathematics, vol 46, pp 24–31

  2. Eshelby JD (1951) The force on an elastic singularity. Philos Trans R Soc Lond Ser A Math Phys Sci 244:87–112

    Article  Google Scholar 

  3. Eshelby JD (1975) The elastic energy-momentum tensor. J Elast 5:321–335

    Article  MATH  Google Scholar 

  4. Gross D, Kolling S, Müller R, Schmidt I (2003) Configurational forces and their application in solid mechanics. Eur J Mech A/Solids 22:669–692

    Article  MATH  Google Scholar 

  5. Gurtin ME (2000) Configurational forces as basic concepts of continuum Physics. Springer, Heidelberg

    Google Scholar 

  6. Kaliske M, Rothert H (1998) Constitutive approach to rate-independent properties of filled elastomers. Int J Solids Struct 35:2057–2071

    Article  MATH  Google Scholar 

  7. Kaliske M, Näser B, Müller R (2005) Formulation and computation of fracture sensitivity for elastomers. In: Austrell PE, Kari L (eds) Constitutive models for rubber IV. A. A. Balkema Publishers, pp 37–43

  8. Kienzler R, Herrmann G (2000) Mechanics in material space. Springer, Heidelberg

    MATH  Google Scholar 

  9. Kolling S (2001) Zur numerischen Simulation von Morphologieänderungen in mikroheterogenen Materialien. PhD thesis, Institut für Mechanik, TU Darmstadt

  10. Lee EH (1969) Elastic-plastic deformation at finite strains. ASME. J Appl Mech 36:1–6

    MATH  Google Scholar 

  11. Liebe T, Denzer R, Steinmann P (2003) Application of material force method to isotropic continuum damage. Comput Mech 30:171–184

    Article  MATH  Google Scholar 

  12. Maugin GA (1993) Material inhomogeneities in elasticity. Chapman & Hall, London

    MATH  Google Scholar 

  13. Menzel A, Denzer R, Steinmann P (2004) On the comparision of two approaches to compute material forces for inelastic materials. Application to single-slip crystal-plasticity. Comput Methods Appl Mech Eng 193:5411–5428

    Article  MATH  Google Scholar 

  14. Miehe C (1993) Kanonische Modelle Multiplikativer Elasto-Plastizität. Thermodynamische Formulierung und numerische Implementation. Habilitationsschrift, Institut für Baumechanik und Numerische Mechanik, Universität Hannover

  15. Müller R (2001) 3D-Simulation der Mikrostrukturentwicklung in Zwei-Phasen-Materialien. PhD thesis, Institut für Mechanik, TU Darmstadt

  16. Müller R, Maugin GA (2002) On material forces and finite element discretizations. Comput Mech 29:52–60

    Article  MATH  Google Scholar 

  17. Müller R, Kolling S, Gross D (2002) On configurational forces in the context of finite element method. Int J Numer Methods Eng 53:1557–1574

    Article  MATH  Google Scholar 

  18. Näser B, Kaliske M (2003) Numerische bruchmechanische Analysen mittels materieller Kräfte. Leipzig Ann Civil Eng Report 8:265–280

    Google Scholar 

  19. Nguyen TD, Govindjee S, Klein PA, Gao H (2005) A material force method for inelastic fracture mechanics. J Mecha Phys Solids 53:91–121

    Article  MATH  Google Scholar 

  20. Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35:379–386

    Google Scholar 

  21. Steinmann P (2000) Application of material force to hyperelastostatic fracture mechanics. I. Continuum mechanical setting. Int J Solids Struct 37:7371–7391

    Article  MATH  Google Scholar 

  22. Steinmann P, Ackermann D, Barth FJ (2001) Application of material force to hyperelastostatic fracture mechanics. II. Computational setting. Int J Solids Struct 38:5509–5526

    Article  MATH  Google Scholar 

  23. Zimmermann D, Miehe C (2004) Material forces in standard dissipative solids obtained from an incremental variational formulation. In: Proceedings in applied mathematics and mechanics, Wiley-VCH, vol 4, pp 274–275

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kaliske.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Näser, B., Kaliske, M. & Müller, R. Material forces for inelastic models at large strains: application to fracture mechanics. Comput Mech 40, 1005–1013 (2007). https://doi.org/10.1007/s00466-007-0159-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-007-0159-9

Keywords

Navigation