Skip to main content
Log in

Stochastic nonlinear free vibration of laminated composite plates resting on elastic foundation in thermal environments

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents the nonlinear free vibration analysis of laminated composite plates resting on elastic foundation with random system properties in thermal environments. System parameters are modeled as basic random variables for accurate prediction of system behavior. A C 0 nonlinear finite element based on HSDT in von Karman sense is used to descretize the laminate. A direct iterative method in conjunction with first-order perturbation technique is outlined and applied to solve the stochastic nonlinear generalized eigenvalue problem. The developed stochastic procedure is successfully used for thermally induced nonlinear free vibration problem with a reasonable accuracy. Numerical results for various combinations of boundary conditions, geometric parameters, amplitude ratios, foundation parameters and thermal loading have been compared with those available in literature and an independent MCS. Some new results are also presented which clearly demonstrate the importance of the randomness in the system parameters on the response of the structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a, b:

plate length and breadth

b i :

basic random system parameters

E11, E22:

longitudinal and Transverse elastic moduli

G12, G13, G23:

shear moduli

h :

thickness of the plate

K l :

linear bending stiffness matrix

K nl :

nonlinear bending stiffness matrix

K g :

thermal geometric stiffness matrix

M :

consistent mass matrixs

NE, N :

number of elements, number of layers in the laminated plate

NN:

number of nodes per element

φ i :

shape function of ith node

\({\left\{{\overline{{Q}}_{ij}}\right\}_k}\) :

reduced elastic material constants

Λ, {Λ}(e) :

vector of unknown displacements displacement vector of eth element

\({\overline{{u}}, \overline{{v}}, \overline{{w}}}\) :

displacements of a point (x, y, z)

u, v, w:

displacement of a point on the mid plane of plate

\({\{\sigma\}, \{\varepsilon\}}\) :

stress vector, Strain vector

ψ y , ψ x :

rotations of normal to mid plane about the x and y axis respectively

θx, θy, θk:

two slopes and angle of fiber orientation wrt x-axis for kth layer

x, y, z:

cartesian coordinates

ρ, λ, Var(.):

mass density, eigenvalue, variance

ω l , ϖ l :

fundamental linear frequency and its dimensionless form

ω nl , ϖ nl :

fundamental nonlinear frequency and its dimensionless form

δT :

Difference in temperatures

α1, α2, α12:

thermal expansion coefficients along x and y directions

α l , α t :

thermal coefficients in longitudinal and transverse directions of the fibre

References

  1. Liu Chorng-Fuh, Huang Chih-Hsing (1996) Free vibration of composite laminated plates subjected to temperature changes. Comput Struct 60(1): 95–101

    Article  MATH  Google Scholar 

  2. Girish J, Ramachandra LS (2005) Thermal postbuckled vibrations of symmetrically laminated composite plates with initial geometric imperfections. J Sound Vib 282(3–5): 1137–1153

    Article  Google Scholar 

  3. Lee Dong-Min, Lee In (1997) Vibration behaviors of thermally postbuckled anisotropic plates using first-order shear deformable plate theory. Comput Struct 63(3): 371–378

    Article  MATH  Google Scholar 

  4. Cheng Zhen-Qiang, Kitipornchai S (2000) Exact eigenvalue correspondences between laminated plate theories via membrane vibration. Int J Solids Struct 37(16): 2253–2264

    Article  MATH  Google Scholar 

  5. Shen Hui-Shen, Yang J, Zhang L (2000) Dynamic response of reissner–mindlin plates under thermo-mechanical loading and resting on elastic foundations. J Sound Vib 232(2): 309–329

    Article  Google Scholar 

  6. Shen H.-S, Yang J, Zhang L (2001) Free and forced vibration of Reissner–Mindlin plates with free edges resting on elastic foundations. J Sound Vib 244(2): 299–320

    Article  Google Scholar 

  7. Shen Hui-Shen, Zheng J-J, Huang X-L (2003) Dynamic response of shear deformable laminated plates under thermo-mechanical loading and resting on elastic foundations. Compos Struct 60(1): 57–66

    Article  Google Scholar 

  8. Nigam NC, Narayanan S (1994) Applications of random vibrations. Narosa, New Delhi

    Google Scholar 

  9. Singh BN, Yadav D, Iyengar NGR (2003) A C° element for free vibration of composite plates with uncertain material properties. Adv Compos Mater 11(4): 331–350

    Article  Google Scholar 

  10. Singh BN, Yadav D, Iyengar NGR (2001) Natural frequencies of composite plates with random material properties. Int J Mech Sci 43: 2193–2214

    Article  MATH  Google Scholar 

  11. Singh BN, Yadav D, Iyengar NGR (2001) Free vibration of laminated spherical panels with random material properties. J Sound Vibr 244(2): 321–338

    Article  Google Scholar 

  12. Shaker A, Abdelrahman WG, Tawfik M, Edward S (2008) stochastic finite element analysis of the free vibration of laminated composite plates. J Comput Mech 41(4): 493–501

    Article  MATH  Google Scholar 

  13. Chonan S (1985) Random vibration of a prestressed orthotropic thick rectangular plate on a generalized flexible foundation. J Acoust Soc Am 78(2): 598–604

    Article  Google Scholar 

  14. Venini P, Mariani J (2002) Free vibration of uncertain composite plates via Raleigh-Ritz approaches. Comput Struct 64(1–4): 407–423

    Google Scholar 

  15. Yamin Z, Chen S, Lue Q (1996) Stochastic perturbation finite elements. Comput Struct 59(3): 425–429

    Article  Google Scholar 

  16. Zhang J, Ellingwood B (1993) Effects of uncertain material properties on structural stability. ASCE J Struct Eng 121: 705–716

    Article  Google Scholar 

  17. Zhang Z, Chen S (1990) The standard deviation of the eigen solutions for random multi degree freedom systems. Comput Struct 39(6): 603–607

    Article  Google Scholar 

  18. Salim S, Iyengar NGR, Yadav D (1998) Natural frequency characteristics of composite plates with random properties. Struct Eng Mech 6(6): 659–671

    Google Scholar 

  19. Yadav D, Verma N (1998) Free vibration of composite circular cylindrical shells with random material properties. Part 1: general theory. Compos Struct 41: 331–338

    Article  Google Scholar 

  20. Yadav D, Verma N (2001) Free vibration of composite circular cylindrical shells with random material properties. Part 2: applications. Compos Struct 51: 371–380

    Article  Google Scholar 

  21. Onkar Amit Kumar, Yadav D (2004) Non-linear free vibration of laminated composite plate with random material properties. J Sound Vib 272(3–5): 627–641

    Article  Google Scholar 

  22. Onkar AK, Upadhyay CS, Yadav D (2006) Generalized buckling response of laminated composite plates with random material properties using stochastic finite elements. Int J Mech Sci 48(7): 780–798

    Article  Google Scholar 

  23. Tripathi Vivek, Singh BN, Shukla KK (2007) Free vibration of laminated composite conical shells with random material properties. Compos Struct 81: 96–104

    Article  Google Scholar 

  24. Lal Achchhe, Singh BN, Kumar R (2007) Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties. Struct Eng Mech 27(2): 199–222

    Google Scholar 

  25. Lal A, Singh BN, Kumar R (2008) Nonlinear free vibration of laminated composite plate on elastic foundation with uncertain system properties. Int J Mech Sci 50: 1203–1212

    Article  Google Scholar 

  26. Lal Achchhe, Singh BN, Kumar R (2008) Effect of random system properties on the initial buckling of laminated composite plate resting on elastic foundation. Int J Struc Stab Dyn 8(1): 1–28

    Article  Google Scholar 

  27. Kitipornchai S, Yang J, Liew KM (2006) Random vibration of the functionally graded laminates in thermal environments. Comput Method Appl Mech Eng 195: 1075–1095

    Article  MATH  Google Scholar 

  28. Locke JE (1993) Finite element large deflection random response of thermally buckled plates. J Sound Vib 160(2): 301–312

    Article  MATH  Google Scholar 

  29. Reddy JN (1984) A simple higher order theory for laminated composite plates. J Appl Mech Trans ASME 51: 745–752

    Article  MATH  Google Scholar 

  30. Shankara CA, Iyenger NGR (1996) A C 0 element for the free vibration analysis of laminated composite plates. J Sound Vib 191(5): 721–738

    Article  Google Scholar 

  31. Chia CY (1980) Nonlinear analysis of plates. McGraw-Hill, New York

    Google Scholar 

  32. Reddy JN (1996) Mechanics of laminated composite plate theory and analysis. CRC Press, Florida

    Google Scholar 

  33. Reddy JN (1981) Energy and variational methods in applied mechanics. Wiley, New York

    Google Scholar 

  34. Rajsekaran S, Murray DW (1973) Incremental finite element matrices. ASCE J Struct Div 99: 2423–2438

    Google Scholar 

  35. Kleiber M, Hien TD (1992) The stochastic finite element method. Wiley, New York

    MATH  Google Scholar 

  36. Franklin JN (1968) Matrix theory. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  37. Lin SC, Kam TY (2000) Probability failure analysis of transversely loaded composite plates using higher-order second moment method. J Eng Mech ASCE 126(8): 812–820

    Article  Google Scholar 

  38. Liu WK, Ted B, Mani A (1986) Random field finite elements. Int J Numer methods Eng 23(10): 1831–1845

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achchhe Lal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lal, A., Singh, B.N. Stochastic nonlinear free vibration of laminated composite plates resting on elastic foundation in thermal environments. Comput Mech 44, 15–29 (2009). https://doi.org/10.1007/s00466-008-0352-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0352-5

Keywords

Navigation