Skip to main content
Log in

Numerical techniques for rolling rubber wheels: treatment of inelastic material properties and frictional contact

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Arbitrary Lagrangian–Eulerian (ALE) methods provide a well established basis for the numerical analysis of rolling contact problems. Whereas the theoretical framework is well developed for elastic constitutive behavior, special measures are necessary for the computation of dissipative effects like inelastic properties and friction because the path of material points is not traced inherently. In this presentation a fractional step approach is suggested for the integration of the evolution equations for internal variables. A Time-Discontinuous Galerkin (TDG) method is introduced for the numerical solution of the related advection equations. Furthermore, a mathematically sound approach for the treatment of frictional rolling within the ALE-description is suggested. By this novel and fully implicit algorithm the slip velocities are integrated along their path-lines. For dissipative effects due to both, inelastic behavior and friction, physical reliable results will be demonstrated as well as the computability of large scaled finite element tire-models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abaqus (2006) ABAQUS/Standard Theory Manual, Version 6.6

  2. Baines MJ (1998) A survey of numerical schemes for advection, the shallow water equations and dambreak problems. In: Proceedings of the 1st CADAM workshop, Wallingford

  3. Bauer RE (1995) Discontinuous galerkin methods for ordinary differential equations. Master’s thesis, University of Northern Colorado

  4. Bayoumi HN, Gadala MS (2004) A complete finite element treatment for the fully coupled implicit ale formulation. Comput Mech 33: 435–452

    Article  MATH  Google Scholar 

  5. Benson D (1989) An efficient accurate simple ale method for nonlinear finite element programs. Comp Meth Appl Mech Eng 72: 305–350

    Article  MATH  Google Scholar 

  6. Benson D (1992) Computational methods in lagrangian and eulerian hydrocodes. Comp Meth Appl Mech Eng 99: 235–394

    Article  MathSciNet  Google Scholar 

  7. Blab R, Harvey JT (2002) Modeling measured 3d tire contact stresses in a viscoelastic FE-pavement model. Int J Geomechanics 2(3): 271–290

    Article  Google Scholar 

  8. Carter FW (1926) On the action of a locomotive driving wheel. Proc Royal Soc London A 122: 151–157

    Article  Google Scholar 

  9. Cockburn B, Karniadakis GE, Shu CW (2000) The development of discontinuous galerkin methods. In: Cockburn B, Karniadakis GE, Shu CW(eds) Discontinuous galerkin methods. Springer, Berlin, pp 3–50

    Google Scholar 

  10. Donea J, Huerta A, Ponthot JP, Rodriguez-Ferran A (2004) Arbitrary lagrangian-eulerian methods. In: Stein E, de Borst R, Hughes T(eds) Encyclopedia of computational mechanics, vol.1: fundamentals. Wiley, New York, pp 414–437

    Google Scholar 

  11. Faria LO, Oden JT, Yavari B, Tworzydlo W, Bass JM, Becker EB (1992) Tire modeling by finite elements. Tire Sci Technol 20: 33–56

    Article  Google Scholar 

  12. Fressmann D, Wriggers P (2005) Advection approaches for single- and multi-material arbitrary Lagrangian-Eulerian finite element procedures. Comput Mech 39: 153–190

    Article  Google Scholar 

  13. Gadala MS (2004) Recent trends in ALE-formulation and its applications in solid mechanics. Comp Meth Appl Mech Eng 193: 4247–4275

    Article  MATH  MathSciNet  Google Scholar 

  14. Godunov S (1959) Finite difference method for numerical computation of discontinuous solutions of the equation of fluid dynamics. Math Sbornik 47: 272–306

    MathSciNet  Google Scholar 

  15. Heinrich G, Kaliske M (1998) Theoretical and numerical formulation of a molecular based constitutive tube-model of rubber elasticity. Comput Theor Polym Sci 7: 227–241

    Article  Google Scholar 

  16. Hu G, Wriggers P (2002) On the adaptive finite element method of steady state rolling contact for hyperelasticity in finite deformations. Comp Meth Appl Mech Eng 191: 1333–1348

    Article  MATH  MathSciNet  Google Scholar 

  17. Hughes TJR, Hulbert GM (1988) Space-time finite element methods for elastodynamics. Comp Meth Appl Mech Eng 66: 339–363

    Article  MATH  MathSciNet  Google Scholar 

  18. Koehne SH, Matute B, Mundl R (2003) Evaluation of tire tread and body interactions in the contact patch. Tire Sci Technol 31(3): 159–172

    Article  Google Scholar 

  19. Kolditz O (2002) Computational methods in environmental fluid mechanics. Springer, Heidelberg

    MATH  Google Scholar 

  20. Laursen TA (2002) Computational contact and impact mechanics. Springer, Heidelberg

    MATH  Google Scholar 

  21. Laursen TA, Stanciulescu I (2006) An algorithm for incorporation of frictional sliding conditions within a steady state rolling framework. Commun Num Methods Eng 22: 301–318

    Article  MATH  MathSciNet  Google Scholar 

  22. Le Tallec P, Rahier C (1994) Numerical models of steady rolling for nonlinear viscoelastic structures in finite deformations. Int J Num Meth Eng 37: 1159–1186

    Article  MATH  Google Scholar 

  23. Nackenhorst U (1993) On the finite element analysis of steady state rolling contact. In: Aliabadi MH, Brebbia CA (eds) Contact Mechanics – Computational Techniques, Computational Mechanics Publications

  24. Nackenhorst U (2004) The ALE-formulation of bodies in rolling contact—Theoretical foundations and finite element approach. Comp Meth Appl Mech Eng 193(39–41): 4299–4322

    Article  MATH  MathSciNet  Google Scholar 

  25. Nasdala L, Kaliske M, Becker A, Rothert H (1998) An efficient viscoelastic formulation for steady-state rolling. Comput Mech 22: 395–403

    Article  MATH  Google Scholar 

  26. Oden JT, Lin TL (1986) On the general rolling contact problem for finite deformations of a viscoelastic cylinder. Comp Meth Appl Mech Eng 57: 297–367

    Article  MATH  MathSciNet  Google Scholar 

  27. Padovan J (1987) Finite element analysis of steady and transient moving/rolling nonlinear viscoelastic structure – 1. Theory Comput Struct 27: 249–257

    Article  MATH  Google Scholar 

  28. Rodriguez-Ferran A, Casadei F, Huerta A (1998) Ale stress update for transient and quasistatic processes. Int J Num Meth Eng 43: 241–262

    Article  MATH  Google Scholar 

  29. Schenk O, Gärtner K (2004) Solving unsymmetric sparse systems of linear equations with pardiso. J Future Generation Comput Syst 20(3): 475–487

    Article  Google Scholar 

  30. Shakib F, Hughes TJR (1991) A new finite element formulation for computational fluid dynamics: Ix. fourier analysis of space-time galerkin/least-squares algorithms. Comput Methods Appl Mech Eng 87: 35–58

    Article  MATH  MathSciNet  Google Scholar 

  31. Simo JC (1987) On a fully three–dimensional finite–strain viscoelastic damage model. Comp Meth Appl Mech Eng 60: 153–173

    Article  MATH  MathSciNet  Google Scholar 

  32. Simo JC, Hughes TJR (1998) Computational Inelasticity. Springer, Heidelberg

    MATH  Google Scholar 

  33. Stoker C (1999) Developments of the arbitrary lagrangian-eulerian method in nonlinear solid mechanics. PhD thesis, University Twente

  34. Wriggers P (1995) Finite element algorithms for contact problems. Arch Comp Meth Eng 2: 1–49

    Article  MathSciNet  Google Scholar 

  35. Wriggers P (2006) Computational contact mechanics, 2nd edn. Springer, Heidelberg

    MATH  Google Scholar 

  36. Ziefle M (2007) Numerische Konzepte zur Behandlung inelastischer effekte beim reibungsbehafteten Rollkontakt. PhD thesis, Leibniz University of Hannover

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ziefle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziefle, M., Nackenhorst, U. Numerical techniques for rolling rubber wheels: treatment of inelastic material properties and frictional contact. Comput Mech 42, 337–356 (2008). https://doi.org/10.1007/s00466-008-0243-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0243-9

Keywords

Navigation