Skip to main content

Advertisement

Log in

Effect of insufflation gas and intraabdominal pressure on portal venous flow during pneumoperitoneum in the rat

  • Original Articles
  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Carbon dioxide, the primary gas used to establish a pneumoperitoneum, causes numerous systemic effects related to cardiovascular function and acid-base balance. Therefore, the use of other gases, such as helium, has been proposed. Furthermore, the pneumoperitoneum itself, with the concomitant elevation of intraabdominal pressure, causes local and systemic effects that have been only partly elucidated. Portal blood flow, which plays an important role in hepatic function and cell-conveyed immune response, is one of the affected parameters.

Methods

An established animal model (rat) of laparoscopic surgery was extended by implanting a periportal flow probe. Hemodynamics in the portal vein were then measured by transit-time ultrasonic flowmetry during increasing intraabdominal pressure (2–12 mmHg) caused by gas insufflation (carbon dioxide vs helium).

Results

The installation of the pneumoperitoneum with increasing intraperitoneal pressure led to a significant linear decrease in portal venous flow for both carbon dioxide and helium. At higher pressure levels (8–12 mmHg), portal blood flow was significantly lower (1.5–2.5-fold) during carbon dioxide pneumoperitoneum. An intraabdominal pressure of 8 mmHg caused a decrease to 38.2% of the initial flow (helium, 59.7%); whereas at 12 mmHg, portal flow was decreased to 16% (helium, 40.5%).

Conclusion

Elevated intraabdominal pressure generated by the pneumoperitoneum results in a reduction of portal venous flow. This effect is significantly stronger during carbon dioxide insufflation. Portal flow reduction may compromise hepatic function and cell-conveyed immune response during laparoscopic surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson RJ, Cronin RE, McDonald KM, Schrier RW (1976) Mechanisms of portal hypertension-induced alteration in renal hemodynamics, renal water excretion, and renin secretion. J Clin Invest 58: 964–970

    Article  PubMed  CAS  Google Scholar 

  2. Andersen MN, Kuchiba K (1970) Measurement of acute changes in liver function and blood flow. Arch Surg 100: 541–545

    PubMed  CAS  Google Scholar 

  3. Barnes RJ, Comline RS, Dobson A, Drost CJ (1983) An implantable transit time ultrasonic blood flowmeter. J Physiol 345: 2–3

    Google Scholar 

  4. Berguer R, Gutt CN, Stiegman GV (1993) Laparoscopic surgery in the rat: description of a new technique. Surg Endosc 7: 345–347

    Article  PubMed  CAS  Google Scholar 

  5. Bouvy ND, Marquet RL, Jeekel H, Bonjer HJ (1996) Impact of gas(less) laparoscopy and laparotomy on peritoneal tumor growth and abdominal wall metastases. Ann Surg 6: 694–701

    Article  Google Scholar 

  6. Caldwell CB, Ricotta JJ (1987) Changes in visceral blood flow with elevated intraabdominal pressure. J Surg Res 43: 14–20

    Article  PubMed  CAS  Google Scholar 

  7. Cardoso JE, Giroux L, Kassissia I, Houssin D, Habib N, Huet PM (1994) Liver function improvement following increased portal blood flow in cirrhotic rats. Gastroenterology 107: 460–467

    PubMed  CAS  Google Scholar 

  8. Coleman DL (1986) Regulation of macrophage phagocytosis. Eur J Clin Microbiol 5: 1–5

    Article  PubMed  CAS  Google Scholar 

  9. Cullen DJ, Coyle JP, Teplick R, Long MC (1989) Cardiovascular, pulmonary, and renal effects of massively increased intra-abdominal pressure in critically ill patients. Crit Care Med 17: 118–121

    Article  PubMed  CAS  Google Scholar 

  10. Declan-Fleming RY, Dougherty TB, Feig BW (1997) The safety of helium for abdominal insufflation. Surg Endosc 11: 230–234

    Article  Google Scholar 

  11. Diebel LN, Wilson RF, Dulchavsky SA, Saxe J (1992) Effect of increased intraabdominal pressure on hepatic arterial, portal venous and hepatic microcirculatory blood flow. J Trauma 33: 279–282

    Article  PubMed  CAS  Google Scholar 

  12. Epstein RM, Wheeler HO, Frumin J, Habif DV, Papper EM, Bradley SE (1961) The effect of hypercapnia on estimated hepatic blood flow, circulating splanchnic blood volume, and hepatic sulfobromopthalein clearance during general anesthesia in man. J Clin Invest 40: 592–598

    Article  PubMed  CAS  Google Scholar 

  13. Goeting NL, Fleming JS, Gallagher P, Walmsely BH, Karran SJ (1986) Alterations in liver blood flow and reticuloendothelial function in progressive cirrhosis in the rat. J Nucl Med 27: 1751–1754

    PubMed  CAS  Google Scholar 

  14. Gutt CN, Heinz P, Kaps W, Paolucci V (1997) The phagocytosis activity during conventional and laparoscopic operations in the rat: a preliminary study. Surg Endosc 11:899–901 DOI: 10.1007/s004649900482

    Article  PubMed  CAS  Google Scholar 

  15. Gutt CN, Held S, Heller K, Paolucci V (1996) A small animal model for laparoscopic microsurgery training. Min Invas Ther Allied Technol 5: 302–306

    Article  Google Scholar 

  16. Gutt CN, Schmandra TC (1999) Portal venous flow during CO2 pneumoperitoneum in the rat. Surg Endosc 13: 902–905 DOI: 10.1007/s004649901130

    Article  PubMed  CAS  Google Scholar 

  17. Ho HS, Gunther RA, Wolfe BM (1992) Intraperitoneal carbon dioxide insufflation and cardiopulmonary responses to laparoscopic cholecystectomy in pigs. Arch Surg 127: 928–932

    PubMed  CAS  Google Scholar 

  18. Ho HS, Saunders CJ, Corso FA, Wolfe BM (1993) The effects of CO2 pneumoperitoneum on hemodynamics in hemorrhaged animals. Surg 114: 381–387

    CAS  Google Scholar 

  19. Ho HS, Saunders CJ, Gunther RA, Wolfe BM (1995) Effector of hemodynamics during laparoscopy: CO2-absorption or intraabdominal pressure? J Surg Res 59: 497–503

    Article  PubMed  CAS  Google Scholar 

  20. Ishizaki Y, Bandai Y, Shimomura K, Abe H, Ohtomo Y, Idezuki Y (1993) Changes in splanchnic blood flow and cardiovascular effects following peritoneal insufflation of carbon dioxide. Surg Endosc 7: 420–423

    Article  PubMed  CAS  Google Scholar 

  21. Ivankovich AD, Miletich DJ, Albrecht MD, Heymann HJ, Bonnet RF (1975) Cardiovascular effects of intraperitoneal insufflation with carbon dioxide and nitrous oxide in the dog. Anesthesiology 42: 281–287

    Article  PubMed  CAS  Google Scholar 

  22. Jakimowicz J, Stultiens G, Smulders F (1998) Laparoscopic insufflation of the abdomen reduces portal venous flow. Surg Endosc 12: 129–132 DOI: 10.1007/s004649900612

    Article  PubMed  CAS  Google Scholar 

  23. Johnson PC (1964) Review of previous studies and current theories of autoregulation. In: Johnson PC (ed) Autoregulation of blood flow. American Heart Association, New York, pp 1–9

    Google Scholar 

  24. Kashtan J, Green JF, Parson EQ, Holcroft JW (1989) Hemodynamic effects of increased abdominal pressure. J Surg Res 30: 249–255

    Article  Google Scholar 

  25. Kotzampassi K, Kapanidis N, Kazamias P, Elefteriadis E (1993) Hemodynamic events in the peritoneal environment during pneumoperitoneum in dogs. Surg Endosc 7: 494–499

    Article  PubMed  CAS  Google Scholar 

  26. Leighton T, Liu S, Bongard FS (1993) Comparative cardiopulmonary effects of carbon dioxide versus helium pneumoperitoneum. Surgery 113: 527–531

    PubMed  CAS  Google Scholar 

  27. Leighton T, Pianim N, Liu S, Kono M, Klein S, Bongard F (1992) Effectors of hypercarbia during experimental pneumoperitoneum. Am J Surg 58: 717–721

    CAS  Google Scholar 

  28. Nashat KH, Slater DN, Underwood JC, Triger DR, Woods HF (1985) Phagocytic function in the isolated perfused rat liver: an experimental model. J Hepatol 1: 153–166

    Article  PubMed  CAS  Google Scholar 

  29. Normann SJ (1972) Reticuloendothelial system function. V. Studies on the correlation between phagocytic rate and liver blood flow. J Reticuloendothel Soc 12: 473–484

    PubMed  CAS  Google Scholar 

  30. Normann SJ (1973) Reticuloendothelial system function. VI. Experimental alterations influencing the correlation between portal blood flow and colloid clearance. J Reticuloendothel Soc 13: 47–60

    PubMed  CAS  Google Scholar 

  31. Price HL (1960) Effects of carbon dioxide on the cardiovascular system. Anesthesiology 21: 652–655

    PubMed  CAS  Google Scholar 

  32. Punnonen R, Viinamaki O (1982) Vasopressin release during laparoscopy: role of increased intraabdominal pressure. Lancet 8264: 175–176

    Article  Google Scholar 

  33. Reichen J, Egger B, Ohara N, Zeltner TB, Zysset T, Zimmermann A (1988) Determinants of hepatic function in liver cirrhosis in the rat: multivariate analysis. J Clin Invest 82: 2069–2076

    Article  PubMed  CAS  Google Scholar 

  34. Richardson JD, Trinkle JK (1976) Hemodynamic and respiratory alterations with increased intraabdominal pressure. J Surg Res 20: 401–404

    Article  PubMed  CAS  Google Scholar 

  35. Shimizu M, Hiroshi Y, Hatori N, Hag Y, Okuda E, Uriuda Y, Tanaka S (1990) Acute effect of intraabdominal presure on liver and systemic circulation. Vasc Surg 24: 677–682

    Google Scholar 

  36. Van den Bos GC, Drake AJ, Noble MI (1979) The effect of carbon dioxide upon myocardial contractile performance, blood flow and oxygen consumption. J Physiol 287: 149–161

    PubMed  Google Scholar 

  37. Welch WJ, Deng X, Snellen H, Wilcox CS (1995) Validation of miniature ultrasonic transit-time flow probes for measurement of renal blood flow in rats. Am J Physiol 268: 175–178

    Google Scholar 

  38. Westerband A, Van de Water JM, Amzallag M (1992) Cardiovascular changes during laparoscopic cholecystectomy. Surg Gynecol Obstet 175: 535–538

    PubMed  CAS  Google Scholar 

  39. Williams MD, Murr PC (1993) Laparoscopic insufflation of the abdomen depresses cardiopulmonary function. Surg Endosc 7: 12–16

    Article  PubMed  CAS  Google Scholar 

  40. Wittgen CM, Andrus CH, Fitzgerald SD, Baudendistel LJ, Dahms TE, Kaminski DL (1991) Analysis of the hemodynamic and ventilatory effects of laparoscopic cholecystectomy. Arch Surg 126: 997–1000

    PubMed  CAS  Google Scholar 

  41. Wunsch A (1997) Influence of different gases used for insufflation on the pH of subcutaneous tissue. First Workshop on experimental laparoscopic surgery, Frankfurt, 7–8 March, 1997, section: Metabolism and immunology in laparoscopy, Surg Endosc 12: 1096–1098

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Online publication: 12 December 2000

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmandra, T.C., Kim, Z.G. & Gutt, C.N. Effect of insufflation gas and intraabdominal pressure on portal venous flow during pneumoperitoneum in the rat. Surg Endosc 15, 405–408 (2001). https://doi.org/10.1007/s004640000331

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004640000331

Key words

Navigation