Skip to main content
Log in

Can a virtual reality surgical simulation training provide a self-driven and mentor-free skills learning? Investigation of the practical influence of the performance metrics from the virtual reality robotic surgery simulator on the skill learning and associated cognitive workloads

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

While it is often claimed that virtual reality (VR) training system can offer self-directed and mentor-free skill learning using the system’s performance metrics (PM), no studies have yet provided evidence-based confirmation. This experimental study investigated what extent to which trainees achieved their self-learning with a current VR simulator and whether additional mentoring improved skill learning, skill transfer and cognitive workloads in robotic surgery simulation training.

Methods

Thirty-two surgical trainees were randomly assigned to either the Control-Group (CG) or Experiment-Group (EG). While the CG participants reviewed the PM at their discretion, the EG participants had explanations about PM and instructions on how to improve scores. Each subject completed a 5-week training using four simulation tasks. Pre- and post-training data were collected using both a simulator and robot. Peri-training data were collected after each session. Skill learning, time spent on PM (TPM), and cognitive workloads were compared between groups.

Results

After the simulation training, CG showed substantially lower simulation task scores (82.9 ± 6.0) compared with EG (93.2 ± 4.8). Both groups demonstrated improved physical model tasks performance with the actual robot, but the EG had a greater improvement in two tasks. The EG exhibited lower global mental workload/distress, higher engagement, and a better understanding regarding using PM to improve performance. The EG’s TPM was initially long but substantially shortened as the group became familiar with PM.

Conclusion

Our study demonstrated that the current VR simulator offered limited self-skill learning and additional mentoring still played an important role in improving the robotic surgery simulation training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahmed K, Khan MS, Vats A, Nagpal K, Priest O, Patel V, Vecht JA, Ashrafian H, Yang GZ, Athanasiou T, Darzi A (2009) Current status of robotic assisted pelvic surgery and future developments. Int J Surg 7(5):431–440. doi:10.1016/j.ijsu.2009.08.008

    Article  PubMed  Google Scholar 

  2. Patel VR, Tully AS, Holmes R, Lindsay J (2005) Robotic radical prostatectomy in the community setting–the learning curve and beyond: initial 200 cases. J Urol 174(1):269–272. doi:10.1097/01.ju.0000162082.12962.40

    Article  PubMed  Google Scholar 

  3. Patel MN, Bhandari M, Menon M, Rogers CG (2009) Robotic-assisted partial nephrectomy. BJU Int 103(9):1296–1311. doi:10.1111/j.1464-410X.2009.08584.x

    Article  PubMed  Google Scholar 

  4. Anger JT, Mueller ER, Tarnay C, Smith B, Stroupe K, Rosenman A, Brubaker L, Bresee C, Kenton K (2014) Robotic compared with laparoscopic sacrocolpopexy: a randomized controlled trial. Obstet Gynecol 123(1):5–12. doi:10.1097/AOG.0000000000000006

    Article  PubMed  PubMed Central  Google Scholar 

  5. Martino MA, Berger EA, McFetridge JT, Shubella J, Gosciniak G, Wejkszner T, Kainz GF, Patriarco J, Thomas MB, Boulay R (2014) A comparison of quality outcome measures in patients having a hysterectomy for benign disease: robotic vs. non-robotic approaches. J Minim Invasive Gynecol 21(3):389–393. doi:10.1016/j.jmig.2013.10.008

    Article  PubMed  Google Scholar 

  6. Ma J, Shukla PJ, Milsom JW (2011) The evolving role of robotic colorectal surgery. Dis Colon Rectum 54(3):376–377. doi:10.1007/DCR.0b013e318204a8d5

    Article  PubMed  Google Scholar 

  7. Wilson EB (2009) The evolution of robotic general surgery. Scand J Surg 98(2):125–129

    Article  CAS  PubMed  Google Scholar 

  8. You JY, Lee HY, Son GS, Lee JB, Bae JW, Kim HY (2013) Comparison of robotic adrenalectomy with traditional laparoscopic adrenalectomy with a lateral transperitoneal approach: a single-surgeon experience. Int J Med Robot Comput Assist Surg MRCAS 9(3):345–350. doi:10.1002/rcs.1497

    Article  Google Scholar 

  9. Orady M, Hrynewych A, Nawfal AK, Wegienka G (2012) Comparison of robotic-assisted hysterectomy to other minimally invasive approaches. J Soc Laparoendosc Surg 16(4):542–548. doi:10.4293/108680812X13462882736899

    Article  Google Scholar 

  10. Dulan G, Rege RV, Hogg DC, Gilberg-Fisher KM, Arain NA, Tesfay ST, Scott DJ (2012) Developing a comprehensive, proficiency-based training program for robotic surgery. Surgery 152(3):477–488. doi:10.1016/j.surg.2012.07.028

    Article  PubMed  Google Scholar 

  11. Rashid HH, Leung YY, Rashid MJ, Oleyourryk G, Valvo JR, Eichel L (2006) Robotic surgical education: a systematic approach to training urology residents to perform robotic-assisted laparoscopic radical prostatectomy. Urology 68(1):75–79. doi:10.1016/j.urology.2006.01.057

    Article  PubMed  Google Scholar 

  12. Antiel RM, Van Arendonk KJ, Reed DA, Terhune KP, Tarpley JL, Porterfield JR, Hall DE, Joyce DL, Wightman SC, Horvath KD, Heller SF, Farley DR (2012) Surgical training, duty-hour restrictions, and implications for meeting the Accreditation Council for Graduate Medical Education core competencies: views of surgical interns compared with program directors. Arch Surg 147(6):536–541. doi:10.1001/archsurg.2012.89

    Article  PubMed  Google Scholar 

  13. Ahmed N, Devitt KS, Keshet I, Spicer J, Imrie K, Feldman L, Cools-Lartigue J, Kayssi A, Lipsman N, Elmi M, Kulkarni AV, Parshuram C, Mainprize T, Warren RJ, Fata P, Gorman MS, Feinberg S, Rutka J (2014) A systematic review of the effects of resident duty hour restrictions in surgery: impact on resident wellness, training, and patient outcomes. Ann Surg 259(6):1041–1053. doi:10.1097/SLA.0000000000000595

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee JY, Mucksavage P, Sundaram CP, McDougall EM (2011) Best practices for robotic surgery training and credentialing. J Urol 185(4):1191–1197. doi:10.1016/j.juro.2010.11.067

    Article  PubMed  Google Scholar 

  15. Liu JJ, Gonzalgo ML (2011) Minimally invasive training in urologic oncology. Arch Esp Urol 64(9):865–868

    PubMed  Google Scholar 

  16. Schreuder HW, Oei G, Maas M, Borleffs JC, Schijven MP (2011) Implementation of simulation in surgical practice: minimally invasive surgery has taken the lead: the Dutch experience. Med Teach 33(2):105–115. doi:10.3109/0142159X.2011.550967

    Article  PubMed  Google Scholar 

  17. Johnson E (2007) Surgical simulators and simulated surgeons: reconstituting medical practice and practitioners in simulations. Soc Stud Sci 37(4):585–608

    Article  PubMed  Google Scholar 

  18. Gallagher AG, Ritter EM, Champion H, Higgins G, Fried MP, Moses G, Smith CD, Satava RM (2005) Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training. Ann Surg 241(2):364–372

    Article  PubMed  PubMed Central  Google Scholar 

  19. van Empel PJ, Verdam MG, Strypet M, van Rijssen LB, Huirne JA, Scheele F, Bonjer HJ, Meijerink WJ (2012) Voluntary autonomous simulator based training in minimally invasive surgery, residents’ compliance and reflection. J Surg Educ 69(4):564–570. doi:10.1016/j.jsurg.2012.04.011

    Article  PubMed  Google Scholar 

  20. Chan B, Martel G, Poulin EC, Mamazza J, Boushey RP (2010) Resident training in minimally invasive surgery: a survey of Canadian department and division chairs. Surg Endosc 24(3):499–503. doi:10.1007/s00464-009-0611-3

    Article  PubMed  Google Scholar 

  21. Rosenthal R, Schafer J, Hoffmann H, Vitz M, Oertli D, Hahnloser D (2013) Personality traits and virtual reality performance. Surg Endosc 27(1):222–230. doi:10.1007/s00464-012-2424-z

    Article  PubMed  Google Scholar 

  22. Pitzul KB, Grantcharov TP, Okrainec A (2012) Validation of three virtual reality Fundamentals of Laparoscopic Surgery (FLS) modules. Stud Health Technol Inform 173:349–355

    PubMed  Google Scholar 

  23. Brinkman WM, Buzink SN, Alevizos L, de Hingh IH, Jakimowicz JJ (2012) Criterion-based laparoscopic training reduces total training time. Surg Endosc 26(4):1095–1101. doi:10.1007/s00464-011-2005-6

    Article  PubMed  Google Scholar 

  24. Kang SG, Yang KS, Ko YH, Kang SH, Park HS, Lee JG, Kim JJ, Cheon J (2012) A study on the learning curve of the robotic virtual reality simulator. J Laparoendosc Adv Surg Tech Part A 22(5):438–442. doi:10.1089/lap.2011.0452

    Article  Google Scholar 

  25. Lerner MA, Ayalew M, Peine WJ, Sundaram CP (2010) Does training on a virtual reality robotic simulator improve performance on the da Vinci surgical system? J Endourol 24(3):467–472. doi:10.1089/end.2009.0190

    Article  PubMed  Google Scholar 

  26. Hung AJ, Zehnder P, Patil MB, Cai J, Ng CK, Aron M, Gill IS, Desai MM (2011) Face, content and construct validity of a novel robotic surgery simulator. J Urol 186(3):1019–1024. doi:10.1016/j.juro.2011.04.064

    Article  PubMed  Google Scholar 

  27. Kenney PA, Wszolek MF, Gould JJ, Libertino JA, Moinzadeh A (2009) Face, content, and construct validity of dV-trainer, a novel virtual reality simulator for robotic surgery. Urology 73(6):1288–1292. doi:10.1016/j.urology.2008.12.044

    Article  PubMed  Google Scholar 

  28. Perrenot C, Perez M, Tran N, Jehl JP, Felblinger J, Bresler L, Hubert J (2012) The virtual reality simulator dV-Trainer((R)) is a valid assessment tool for robotic surgical skills. Surg Endosc 26(9):2587–2593. doi:10.1007/s00464-012-2237-0

    Article  PubMed  Google Scholar 

  29. Lee JY, Mucksavage P, Kerbl DC, Huynh VB, Etafy M, McDougall EM (2012) Validation study of a virtual reality robotic simulator–role as an assessment tool? J Urol 187(3):998–1002. doi:10.1016/j.juro.2011.10.160

    Article  PubMed  Google Scholar 

  30. Brinkman WM, Luursema JM, Kengen B, Schout BM, Witjes JA, Bekkers RL (2013) da Vinci skills simulator for assessing learning curve and criterion-based training of robotic basic skills. Urology 81(3):562–566. doi:10.1016/j.urology.2012.10.020

    Article  PubMed  Google Scholar 

  31. Stefanidis D, Wang F, Korndorffer JR Jr, Dunne JB, Scott DJ (2010) Robotic assistance improves intracorporeal suturing performance and safety in the operating room while decreasing operator workload. Surg Endosc 24(2):377–382. doi:10.1007/s00464-009-0578-0

    Article  PubMed  Google Scholar 

  32. Stefanidis D, Hope WW, Scott DJ (2011) Robotic suturing on the FLS model possesses construct validity, is less physically demanding, and is favored by more surgeons compared with laparoscopy. Surg Endosc 25(7):2141–2146. doi:10.1007/s00464-010-1512-1

    Article  PubMed  Google Scholar 

  33. Patel YR, Donias HW, Boyd DW, Pande RU, Amodeo JL, Karamanoukian RL, D’Ancona G, Karamanoukian HL (2003) Are you ready to become a robo-surgeon? Am Surg 69(7):599–603

    PubMed  Google Scholar 

  34. Shaligram A, Meyer A, Simorov A, Pallati P, Oleynikov D (2013) Survey of minimally invasive general surgery fellows training in robotic surgery. J Robot Surg 7(2):131–136. doi:10.1007/s11701-012-0355-2

    Article  PubMed  Google Scholar 

  35. Hung AJ, Patil MB, Zehnder P, Cai J, Ng CK, Aron M, Gill IS, Desai MM (2012) Concurrent and predictive validation of a novel robotic surgery simulator: a prospective, randomized study. J Urol 187(2):630–637. doi:10.1016/j.juro.2011.09.154

    Article  PubMed  Google Scholar 

  36. Finnegan KT, Meraney AM, Staff I, Shichman SJ (2012) da Vinci Skills Simulator construct validation study: correlation of prior robotic experience with overall score and time score simulator performance. Urology 80(2):330–335. doi:10.1016/j.urology.2012.02.059

    Article  PubMed  Google Scholar 

  37. Johnston MJ, Paige JT, Aggarwal R, Stefanidis D, Tsuda S, Khajuria A, Arora S (2016) An overview of research priorities in surgical simulation: what the literature shows has been achieved during the 21st century and what remains. Am J Surg 211(1):214–225. doi:10.1016/j.amjsurg.2015.06.014

    Article  PubMed  Google Scholar 

  38. Panait L, Rafiq A, Tomulescu V, Boanca C, Popescu I, Carbonell A, Merrell RC (2006) Telementoring versus on-site mentoring in virtual reality-based surgical training. Surg Endosc 20(1):113–118. doi:10.1007/s00464-005-0113-x

    Article  CAS  PubMed  Google Scholar 

  39. Alaker M, Wynn GR, Arulampalam T (2016) Virtual reality training in laparoscopic surgery: a systematic review & meta-analysis. Int J Surg 29:85–94. doi:10.1016/j.ijsu.2016.03.034

    Article  PubMed  Google Scholar 

  40. Ahlborg L, Weurlander M, Hedman L, Nisel H, Lindqvist PG, Fellander-Tsai L, Enochsson L (2015) Individualized feedback during simulated laparoscopic training:a mixed methods study. Int J Med Educ 6:93–100. doi:10.5116/ijme.55a2.218b

    Article  PubMed  PubMed Central  Google Scholar 

  41. Paschold M, Huber T, Zeissig SR, Lang H, Kneist W (2014) Tailored instructor feedback leads to more effective virtual-reality laparoscopic training. Surg Endosc 28(3):967–973. doi:10.1007/s00464-013-3258-z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Gyusung Lee received the Association for Surgical Education Center for Excellence in Surgical Education, Research and Training (CESERT) Grant and Intuitive Surgical Clinical Robotic Research Grant as the Principle Investigator of this study. The authors acknowledge the generous support of Dr. Michael Marohn, the Director of MISTIC, and the thoughtful and careful assistance of Karyn Rhyder in editing this manuscript.

Funding

This project was supported by the Association for Surgical Education Center for Excellence in Surgical Education, Research and Training (CESERT) Grant and Intuitive Surgical Clinical Robotic Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyusung I. Lee.

Ethics declarations

Disclosures

Dr. Gyusung Lee received the Association for Surgical Education Center for Excellence in Surgical Education, Research and Training (CESERT) grant and Intuitive Surgical Clinical Robotic Research Grant for this study. Dr. Mija Lee was the co-investigator in this study and is Dr. Gyusung Lee’s spouse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, G.I., Lee, M.R. Can a virtual reality surgical simulation training provide a self-driven and mentor-free skills learning? Investigation of the practical influence of the performance metrics from the virtual reality robotic surgery simulator on the skill learning and associated cognitive workloads. Surg Endosc 32, 62–72 (2018). https://doi.org/10.1007/s00464-017-5634-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-017-5634-6

Keywords

Navigation