Skip to main content

Advertisement

Log in

Development of a navigation system for minimally invasive esophagectomy

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

A major challenge of minimally invasive esophagectomy is the uncertainty about the exact location of the tumor and associated lymph nodes. This study aimed to develop a navigation system for visualizing surgical instruments in relation to the tumor and anatomic structures in the chest.

Methods

An immobilization device consisting of a vacuum mattress fixed to a stretcher was built to decrease patient movement and organ deformation. Computer tomography (CT) markers were embedded in the stretcher at a defined distance to a detachable plate with optical markers on the side of the stretcher. A second plate of optical markers was fixed to the operating instrument. These two optical marker plates were tracked with an optical tracking system. Their positions were then registered in a preoperative CT data set using the authors’ navigation software. This allowed a real-time visualization of the instrument and target structures. To assess the accuracy of the system, the authors designed a phantom consisting of a box containing small spheres in a specific three-dimensional layout. The positions of the spheres were first measured with the navigation system and then compared with the known real positions to determine the accuracy of the system.

Results

In the accuracy assessment, the navigation system showed a precision of 0.95 ± 0.78 mm. In a test data set, the instrument could be successfully navigated to the tumor and target structures.

Conclusion

The described navigation system provided real-time information about the position and orientation of the working instrument in relation to the tumor in an experimental setup. Consequently, it might improve minimally invasive esophagectomy and allow for surgical dissection in an adequate distance to the tumor margin and ease the location of affected lymph nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nguyen NT, Follette DM, Wolfe BM, Schneider PD, Roberts P, Goodnight JE Jr (2000) Comparison of minimally invasive esophagectomy with transthoracic and transhiatal esophagectomy. Arch Surg 135:920–925

    Article  PubMed  CAS  Google Scholar 

  2. Nishimaki T, Shimoji H, Sunagawa H (2004) Recent changes and the future roles of esophageal cancer surgery. Ann Thorac Cardiovasc Surg 10:324–332

    PubMed  Google Scholar 

  3. Smithers BM, Gotley DC, Martin I, Thomas JM (2007) Comparison of the outcomes between open and minimally invasive esophagectomy. Ann Surg 245:232–240

    Article  PubMed  Google Scholar 

  4. Swanstrom LL, Hansen P (1997) Laparoscopic total esophagectomy. Arch Surg 132:943–947, discussion 947–949

    PubMed  CAS  Google Scholar 

  5. Hulscher JB, Tijssen JG, Obertop H, van Lanschot JJ (2001) Transthoracic versus transhiatal resection for carcinoma of the esophagus: a meta-analysis. Ann Thorac Surg 72:306–313

    Article  PubMed  CAS  Google Scholar 

  6. Avital S, Zundel N, Szomstein S, Rosenthal R (2005) Laparoscopic transhiatal esophagectomy for esophageal cancer. Am J Surg 190:69–74

    Article  PubMed  Google Scholar 

  7. DePaula AL, Hashiba K, Ferreira EA, de Paula RA, Grecco E (1995) Laparoscopic transhiatal esophagectomy with esophagogastroplasty. Surg Laparosc Endosc 5:1–5

    PubMed  CAS  Google Scholar 

  8. Espat NJ, Jacobsen G, Horgan S, Donahue P (2005) Minimally invasive treatment of esophageal cancer: laparoscopic staging to robotic esophagectomy. Cancer J 11:10–17

    Article  PubMed  Google Scholar 

  9. Gutt CN, Bintintan VV, Koninger J, Muller-Stich BP, Reiter M, Buchler MW (2006) Robotic-assisted transhiatal esophagectomy. Langenbecks Arch Surg 391:428–434

    Article  PubMed  Google Scholar 

  10. Luketich JD, Schauer PR, Christie NA, Weigel TL, Raja S, Fernando HC, Keenan RJ, Nguyen NT (2000) Minimally invasive esophagectomy. Ann Thorac Surg 70:906–911, discussion 911–902

    Article  PubMed  CAS  Google Scholar 

  11. Martin DJ, Bessell JR, Chew A, Watson DI (2005) Thoracoscopic and laparoscopic esophagectomy: initial experience and outcomes. Surg Endosc 19:1597–1601

    Article  PubMed  CAS  Google Scholar 

  12. Orringer MB, Marshall B, Stirling MC (1993) Transhiatal esophagectomy for benign and malignant disease. J Thorac Cardiovasc Surg 105:265–276, discussion 276–267

    PubMed  CAS  Google Scholar 

  13. Gutt CN, Oniu T, Mehrabi A, Schemmer P, Kashfi A, Kraus T, Buchler MW (2004) Circulatory and respiratory complications of carbon dioxide insufflation. Dig Surg 21:95–105

    Article  PubMed  CAS  Google Scholar 

  14. Harrell AG, Heniford BT (2005) Minimally invasive abdominal surgery: lux et veritas past, present, and future. Am J Surg 190:239–243

    Article  PubMed  Google Scholar 

  15. Luketich JD, Alvelo-Rivera M, Buenaventura PO, Christie NA, McCaughan JS, Litle VR, Schauer PR, Close JM, Fernando HC (2003) Minimally invasive esophagectomy: outcomes in 222 patients. Ann Surg 238:486–494, discussion 494–485

    PubMed  Google Scholar 

  16. Galvani C, Gorodner MV, Moser F, Baptista M, Donahue P, Horgan S (2006) Laparoscopic Heller myotomy for achalasia facilitated by robotic assistance. Surg Endosc 20:1105–1112

    Article  PubMed  CAS  Google Scholar 

  17. Nguyen NT, Schauer P, Luketich JD (2000) Minimally invasive esophagectomy for Barrett’s esophagus with high-grade dysplasia. Surgery 127:284–290

    Article  PubMed  CAS  Google Scholar 

  18. Hanisch E, Markus B, Gutt C, Schmandra TC, Encke A (2001) Robot-assisted laparoscopic cholecystectomy and fundoplication: initial experiences with the Da Vinci system. Chirurg 72:286–288

    Article  PubMed  CAS  Google Scholar 

  19. Heller K, Gutt C, Schaeff B, Beyer PA, Markus B (2002) Use of the robot system Da Vinci for laparoscopic repair of gastro-oesophageal reflux in children. Eur J Pediatr Surg 12:239–242

    Article  PubMed  CAS  Google Scholar 

  20. Elli E, Espat NJ, Berger R, Jacobsen G, Knoblock L, Horgan S (2004) Robotic-assisted thoracoscopic resection of esophageal leiomyoma. Surg Endosc 18:713–716

    Article  PubMed  CAS  Google Scholar 

  21. Dubin MG, Kuhn FA (2005) Stereotactic computer-assisted navigation: state of the art for sinus surgery, not standard of care. Otolaryngol Clin North Am 38:535–549

    Article  PubMed  Google Scholar 

  22. Grunert P, Darabi K, Espinosa J, Filippi R (2003) Computer-aided navigation in neurosurgery. Neurosurg Rev 26:73–99, discussion 100–101

    Article  PubMed  CAS  Google Scholar 

  23. McInerney J, Roberts DW (2000) Frameless stereotaxy of the brain. Mt Sinai J Med 67:300–310

    PubMed  CAS  Google Scholar 

  24. Raabe A, Krishnan R, Seifert V (2003) Actual aspects of image-guided surgery. Surg Technol Int 11:314–319

    PubMed  Google Scholar 

  25. Reinhardt H, Trippel M, Westermann B, Gratzl O (1999) Computer aided surgery with special focus on neuronavigation. Comput Med Imaging Graph 23:237–244

    Article  PubMed  CAS  Google Scholar 

  26. Sindwani R, Metson R (2005) Image-guided frontal sinus surgery. Otolaryngol Clin North Am 38:461–471

    Article  PubMed  Google Scholar 

  27. Wolf I, Vetter M, Wegner I, Bottger T, Nolden M, Schobinger M, Hastenteufel M, Kunert T, Meinzer HP (2005) The medical imaging interaction toolkit. Med Image Anal 9:594–604

    Article  PubMed  Google Scholar 

  28. Broeders IA, Ruurda JP (2002) Robotics in laparoscopic surgery: current status and future perspectives. Scand J Gastroenterol Suppl 236:76–80

    Article  PubMed  Google Scholar 

  29. Kenngott H, Neuhaus J, Gutt CN, Wolf I, Meinzer HP, Vetter M (2006) Entwicklung eines Navigationssystems für die telemanipulatorgestützte Oesophagektomie. In: Meinzer HP, Handels H, Horsch A, Tolxdorff T (eds) Bildverarbeitung für die Medizin 2006. Springer, Heidelberg pp 331–334

  30. Khadem R, Yeh CC, Sadeghi-Tehrani M, Bax MR, Johnson JA, Welch JN, Wilkinson EP, Shahidi R (2000) Comparative tracking error analysis of five different optical tracking systems. Comput Aided Surg 5:98–107

    Article  PubMed  CAS  Google Scholar 

  31. Hummel J, Figl M, Birkfellner W, Bax MR, Shahidi R, Maurer CR Jr, Bergmann H (2006) Evaluation of a new electromagnetic tracking system using a standardized assessment protocol. Phys Med Biol 51:N205–N210

    Article  PubMed  CAS  Google Scholar 

  32. Hummel J, Figl M, Kollmann C, Bergmann H, Birkfellner W (2002) Evaluation of a miniature electromagnetic position tracker. Med Phys 29:2205–2212

    Article  PubMed  Google Scholar 

  33. Schicho K, Figl M, Donat M, Birkfellner W, Seemann R, Wagner A, Bergmann H, Ewers R (2005) Stability of miniature electromagnetic tracking systems. Phys Med Biol 50:2089–2098

    Article  PubMed  Google Scholar 

  34. Keller BP, Lubbert PH, Keller E, Leenen LP (2005) Tissue–interface pressures on three different support surfaces for trauma patients. Injury 36:946–948

    Article  PubMed  CAS  Google Scholar 

  35. Luscombe MD, Williams JL (2003) Comparison of a long spinal board and vacuum mattress for spinal immobilisation. Emerg Med J 20:476–478

    Article  PubMed  CAS  Google Scholar 

  36. Nevinny-Stickel M, Sweeney RA, Bale RJ, Posch A, Auberger T, Lukas P (2004) Reproducibility of patient positioning for fractionated extracranial stereotactic radiotherapy using a double-vacuum technique. Strahlenther Onkol 180:117–122

    Article  PubMed  Google Scholar 

  37. Schou J, Kiermayer H, Ummenhofer W, Herion HP (2001) In search of the most suitable technique for truncal spinal immobilization with associated radiography. Eur J Emerg Med 8:89–92

    Article  PubMed  CAS  Google Scholar 

  38. Cuesta MA, van den Broek WT, van der Peet DL, Meijer S (2004) Minimally invasive esophageal resection. Semin Laparosc Surg 11:147–160

    PubMed  Google Scholar 

  39. de Hoyos A, Litle VR, Luketich JD (2005) Minimally invasive esophagectomy. Surg Clin North Am 85:631–647

    Article  PubMed  Google Scholar 

  40. Nguyen NT, Gelfand D, Stevens CM, Chalifoux S, Chang K, Nguyen P, Luketich JD (2004) Current status of minimally invasive esophagectomy. Minerva Chir 59:437–446

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The current study was conducted within the setting of Research Training Group 1126: Development of New Computer-Based Methods for the Future Workplace in Surgery founded by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. G. Kenngott.

Additional information

Hannes G. Kenngott and Jochen Neuhaus contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenngott, H.G., Neuhaus, J., Müller-Stich, B.P. et al. Development of a navigation system for minimally invasive esophagectomy. Surg Endosc 22, 1858–1865 (2008). https://doi.org/10.1007/s00464-007-9723-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-007-9723-9

Keywords

Navigation