Skip to main content
Log in

Competition between excitation and electronic decay of short-lived molecular states

  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

The nuclear dynamics accompanying the excitation to and the subsequent decay of an electronic state is discussed. Particular attention is paid to cases, in which the whole process cannot be divided into two steps (excitation and decay) since the excitation and the decay times are of the same order of magnitude. The recently introduced time-dependent formulation of the theory describing the wave packets’ dynamics is extended to include the excitation process. The wave packets can be related to the intensity of the emitted particles. Most of the resulting integrals can actually be performed by employing eigenstates of the Hamiltonians corresponding to the involved potential energy surfaces. This leads to the so called “timeindependent” formulation of the theory. Computational details of the implementation of the corresponding “timedependent” and “time-independent” methods are presented. Illustrative applications are given to illuminate both the influence of the excitation process and the lifetime of the decaying state. It emerges that the intuitive interpretation of the spectra (within the above two step model) may fail. Insight into the process is gained by studying the evolution of the spectra as a function of time. The appearance of “atomic lines” due to dissociative decaying and final states is investigated in some detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cederbaum, L.S., Tarantelli, F.: J. Chem. Phys. 98, 9691 (1993)

    Article  ADS  Google Scholar 

  2. Cederbaum, L.S., Campos, P., Tarantelli, F., Sgamellotti, A.: J. Chem. Phys. 95, 6634 (1991)

    Article  ADS  Google Scholar 

  3. Neeb, M., Rubensson, J.-E., Biermann, M., Eberhardt, W.: J. Electron. Spectrosc. 67, 261 (1994)

    Article  Google Scholar 

  4. Neeb, M., Rubensson, J.-E., Biermann, M., Eberhardt, W., Randall, K.J., Feldhaus, J., Kilcoyne, A.L.D., Bradshaw, A.M., Xu, Z., Johnson, P.D., Ma, Y.: Chem. Phys. Lett. 212, 205 (1993)

    Article  ADS  Google Scholar 

  5. Kaspar, F., Domcke, W., Cederbaum, L.S.: Chem. Phys. 44, 33 (1979)

    Article  ADS  Google Scholar 

  6. Gel’mukhanov, F.K., Mazalov, L.N., Kondratenko, A.V.: Chem. Phys. Lett. 46, 133 (1977)

    Article  ADS  Google Scholar 

  7. Correia, N., Flores-Riveros, A., Ågren, H., Helenelund, K., Asplund, L., Gelius, U.: J. Chem. Phys. 83, 2035 (1985)

    Article  ADS  Google Scholar 

  8. Cesar, A., Ågren, H., Carravetta, V.: Phys. Rev. A 40, 187 (1989)

    Article  ADS  Google Scholar 

  9. Shapiro, M.: J. Phys. Chem. 97, 7396 (1993)

    Article  Google Scholar 

  10. Tannor, D.J., Rice, S.A.: Adv. Chem. Phys. 70, 441 (1988)

    Google Scholar 

  11. Morin, P., Nenner, I.: Phys. Rev. Lett. 56, 1913 (1986)

    Article  ADS  Google Scholar 

  12. Svensson, S., Karlsson, L., Matrtensson, N., Baltzer, P., Wannberg, B.: J. Electron. Spectrosc. Relat. Phenom. 50, cl (1990)

    Google Scholar 

  13. Aksela, H., Aksela, S., Ala-Korpela, M., Siranen, O.-P., Hotokka, M., Bancroft, G.M., Tan, K.H., Tulkki, J.: Phys. Rev. A 41, 6000 (1990)

    Article  ADS  Google Scholar 

  14. Morin, P., Nenner, I.: Phys. Scr. T 17, 171 (1987)

    Article  ADS  Google Scholar 

  15. Aksela, H., Aksela, S., Naves de Brito, A., Bancroft, G.M., Tan, K.H.: Phys. Rev. A 45, 7948 (1992)

    Article  ADS  Google Scholar 

  16. Kosloff, R.: J. Phys. Chem. 92, 2087 (1988)

    Article  Google Scholar 

  17. Park, T.J., Light, J.C.: J. Chem. Phys. 85, 5870 (1986)

    Article  ADS  Google Scholar 

  18. Leforestier, C., Bisseling, R.H., Cerjan, C., Feit, M.D., Friesner, R., Guldberg, A., Hammerich, A., Jolicard, G., Karrlein, W., Meyer, H.-D., Lipkin, N., Roncero, O., Kosloff, R.: J. Comp. Phys. 94, 59 (1991)

    Article  MATH  ADS  Google Scholar 

  19. Manthe, U., Köppel, H., Cederbaum, L.S.: J. Chem. Phys. 95, 1708 (1991)

    Article  ADS  Google Scholar 

  20. Colbert, D.T., Miller, W.H.: J. Chem. Phys. 96, 1982 (1992)

    Article  ADS  Google Scholar 

  21. Gel’mukhanov, F., Ågren, H.: Phys. Rev. A 49, 4378 (1994)

    Article  ADS  Google Scholar 

  22. Feshbach, H.: Ann. Phys. (N.Y) 5, 357 (1958)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Feshbach, H.: Ann. Phys (N.Y.) 19, 287 (1962)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Domcke, W.: Phys. Rep. 208, 97 (1991)

    Article  ADS  Google Scholar 

  25. Shapiro, M.: J. Chem. Phys. 101, 3844 (1994)

    Article  ADS  Google Scholar 

  26. Cullum, J.K., Willoughby, R.A.: Large symmetric eigenvalue computation, 1st edn. Boston: Birkhauser 1985

    Google Scholar 

  27. Meyer, H.-D., Pal, S.: J. Chem. Phys. 91, 6195 (1989)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pahl, E., Meyer, HD. & Cederbaum, L. Competition between excitation and electronic decay of short-lived molecular states. Z Phys D - Atoms, Molecules and Clusters 38, 215–232 (1996). https://doi.org/10.1007/s004600050086

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004600050086

PACS

Navigation