Skip to main content

Advertisement

Log in

Peak Morphology and Scalp Topography of the Pharyngeal Sensory-Evoked Potential

  • Original Article
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

The initiation of the pharyngeal stage of swallowing is dependent upon sensory input to the brainstem and cortex. The event-related evoked potential provides a measure of neuronal electrical activity as it relates to a specific stimulus. Air-puff stimulation to the posterior pharyngeal wall produces a sensory-evoked potential (PSEP) waveform. The goal of this study was to characterize the scalp topography and morphology for the component peaks of the PSEP waveform. Twenty-five healthy men and women served as research participants. PSEPs were measured via a 32-electrode cap (10–20 system) connected to SynAmps2 Neuroscan EEG System. Air puffs were delivered directly to the oropharynx using a thin polyethylene tube connected to a flexible laryngoscope. The PSEP waveform is characterized by four early- and mid-latency component peaks: an early positivity (P1) and negativity (N1), followed by a mid-latency positivity (P2) and negativity (N2). The early positive peak P1 is localized bilaterally to the lateral parietal scalp, the N1 medially in the frontoparietal region, and the P2 and N2 with diffuse scalp locations. Somatosensory and premotor regions are possible anatomical correlates of peak locations. Based on the latencies of the peaks, they are likely analogous to somatosensory- and respiratory-related evoked potential peaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aviv JE, Sacco RL, Mohr J, Thompson J, Levin B, Sunshine S, et al. Laryngopharyngeal sensory testing with modified barium swallow as predictors of aspiration pneumonia after stroke. Laryngoscope. 1997;107(9):1254–60.

    Article  PubMed  CAS  Google Scholar 

  2. Aviv JE, Martin JH, Sacco RL, Zagar D, Diamond B, Keen MS, et al. Supraglottic and pharyngeal sensory abnormalities in stroke patients with dysphagia. Ann Otol Rhinol Laryngol. 1996;105(2):92–7.

    PubMed  CAS  Google Scholar 

  3. Setzen M, Cohen MA, Perlman PW, Belafsky PC, Guss J, Mattucci KF, et al. The association between laryngopharyngeal sensory deficits, pharyngeal motor function, and the prevalence of aspiration with thin liquids. Otolaryngol Head Neck Surg. 2003;128(1):99–102.

    Article  PubMed  Google Scholar 

  4. Teismann IK, Steinstraeter O, Stoeckigt K, Suntrup S, Wollbrink A, Pantev C, et al. Functional oropharyngeal sensory disruption interferes with the cortical control of swallowing. BMC Neurosci. 2007;8:62.

    Article  PubMed  Google Scholar 

  5. Kimoff J. Upper airway sensation in snoring and obstructive sleep apnea. Am J Respir Crit Care Med. 2001;164(2):250–5.

    PubMed  CAS  Google Scholar 

  6. Jobin V, Champagne V, Beauregard J, Charbonneau I, McFarland DH, Kimoff RJ. Swallowing function and upper airway sensation in obstructive sleep apnea. J Appl Physiol. 2007;102(4):1587–94.

    Article  PubMed  Google Scholar 

  7. Nguyen A, Jobin V, Payne R, Beauregard J, Naor N, Kimoff RJ. Laryngeal and velopharyngeal sensory impairment in obstructive sleep apnea. Sleep. 2005;28(5):585–93.

    PubMed  Google Scholar 

  8. Mazzone SB. An overview of the sensory receptors regulating cough. Cough. 2005;1:2.

    Article  PubMed  Google Scholar 

  9. Kitagawa J, Shingai T, Takahashi Y, Yamada Y. Pharyngeal branch of the glossopharyngeal nerve plays a major role in reflex swallowing from the pharynx. Am J Physiol Regul Integr Comp Physiol. 2002;282(5):R1342–7.

    PubMed  CAS  Google Scholar 

  10. Sant’Ambrogio G, Tsubone H, Sant’Ambrogio FB. Sensory information from the upper airway: role in the control of breathing. Respir Physiol. 1995;102(1):1–16.

    Article  PubMed  Google Scholar 

  11. Hwang JC, St. John WM, Bartlett D Jr. Receptors responding to changes in upper airway pressure. Respir Physiol. 1984;55(3):355–66.

    Article  PubMed  CAS  Google Scholar 

  12. Hwang JC, St. John WM, Bartlett D Jr. Afferent pathways for hypoglossal and phrenic responses to changes in upper airway pressure. Respir Physiol. 1984;55(3):341–54.

    Article  PubMed  CAS  Google Scholar 

  13. Mu L, Sanders I. Sensory nerve supply of the human oro- and laryngopharynx: a preliminary study. Anat Rec. 2000;258(4):406–20.

    Article  PubMed  CAS  Google Scholar 

  14. Daubenspeck JA, Manning HL, Akay M. Contribution of supraglottal mechanoreceptor afferents to respiratory-related evoked potentials in humans. J Appl Physiol. 2000;88(1):291–9.

    PubMed  CAS  Google Scholar 

  15. Chan PY, Davenport PW. Respiratory-related evoked potential measures of respiratory sensory gating. J Appl Physiol. 2008;105(4):1106–13.

    Article  PubMed  Google Scholar 

  16. Davenport PW, Chan PYS, Zhang W, Chou YL. Detection threshold for inspiratory resistive loads and respiratory-related evoked potentials. J Appl Physiol. 2007;102(1):276–85.

    Article  PubMed  Google Scholar 

  17. Davenport P, Friedman W, Thompson F, Franzen O. Respiratory-related cortical potentials evoked by inspiratory occlusion in humans. J Appl Physiol. 1986;60(6):1843–8.

    PubMed  CAS  Google Scholar 

  18. Webster KE, Colrain IM. The respiratory-related evoked potential: effects of attention and occlusion duration. Psychophysiology. 2000;37(3):310–8.

    Article  PubMed  CAS  Google Scholar 

  19. Fujiu M, Toleikis JR, Logemann JA, Larson CR. Glossopharyngeal evoked potentials in normal subjects following mechanical stimulation of the anterior faucial pillar. Electroencephalogr Clin Neurophysiol. 1994;92(3):183–95.

    Article  PubMed  CAS  Google Scholar 

  20. Hummel T, Haenel T, Hull D. Assessment of pharyngeal sensitivity to mechanical stimuli using psychophysical and electrophysiological techniques. Pulm Pharmacol Ther. 2002;15(3):321–5.

    Article  PubMed  CAS  Google Scholar 

  21. Maloney S, Bell W, Shoaf S, Blair D, Bastings E, Good D, et al. Measurement of lingual and palatine somatosensory evoked potentials. Clin Neurophysiol. 2000;111(2):291–6.

    Article  PubMed  CAS  Google Scholar 

  22. Nakahara H, Nakasato N, Kanno A, Murayama S, Hatanaka K, Itoh H, et al. Somatosensory-evoked fields for gingiva, lip, and tongue. J Dent Res. 2004;83(4):307–11.

    Article  PubMed  CAS  Google Scholar 

  23. Yoshida K, Maezawa H, Nagamine T, Fukuyama H, Murakami K, Iizuka T. Somatosensory evoked magnetic fields to air-puff stimulation on the soft palate. Neurosci Res. 2006;55(2):116–22.

    Article  PubMed  Google Scholar 

  24. Gow D, Hobson AR, Furlong P, Hamdy S. Characterising the central mechanisms of sensory modulation in human swallowing motor cortex. Clin Neurophysiol. 2004;115(10):2382–90.

    Article  PubMed  Google Scholar 

  25. Teismann IK, Steinstraeter O, Warnecke T, Ringelstein EB, Pantev C, Dziewas R. Measurement of pharyngeal sensory cortical processing: technique and physiologic implications. BMC Neurosci. 2009;10:76.

    Article  PubMed  Google Scholar 

  26. Hiraoka K. Movement-related cortical potentials associated with saliva and water bolus swallowing. Dysphagia. 2004;19(3):155–9.

    Article  PubMed  Google Scholar 

  27. Sörös P, Lalone E, Smith R, Stevens T, Theurer J, Menon R, et al. Functional MRI of oropharyngeal air-pulse stimulation. Neuroscience. 2008;153(4):1300–8.

    Article  PubMed  Google Scholar 

  28. Lowell SY, Poletto CJ, Knorr-Chung BR, Reynolds RC, Simonyan K, Ludlow CL. Sensory stimulation activates both motor and sensory components of the swallowing system. Neuroimage. 2008;42(1):285–95.

    Article  PubMed  Google Scholar 

  29. Cordeiro PG, Schwartz M, Neves RI, Tuma R. A comparison of donor and recipient site sensation in free tissue reconstruction of the oral cavity. Ann Plast Surg. 1997;39(5):461–8.

    Article  PubMed  CAS  Google Scholar 

  30. Logie ST, Colrain IM, Webster KE. Source dipole analysis of the early components of the RREP. Brain Topogr. 1998;11(2):153–64.

    Article  PubMed  CAS  Google Scholar 

  31. Arnfred SM, Eder DN, Hemmingsen RP, Glenthøj BY, Chen ACN. Gating of the vertex somatosensory and auditory evoked potential P50 and the correlation to skin conductance orienting response in healthy men. Psychiatry Res. 2001;101(3):221–35.

    Article  PubMed  CAS  Google Scholar 

  32. Adler LE. Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia. Biol Psychiatry. 1982;17(6):639–54.

    PubMed  CAS  Google Scholar 

  33. Verkindt C, Bertrand O, Thevenet M, Pernier J. Two auditory components in the 130–230 ms range disclosed by their stimulus frequency dependence. Neuroreport. 1994;5(10):1189–92.

    PubMed  CAS  Google Scholar 

  34. Crowley KE, Colrain IM. A review of the evidence for P2 being an independent component process: age, sleep and modality. Clin Neurophysiol. 2004;115(4):732–44.

    Article  PubMed  Google Scholar 

  35. Rentzsch J, Jockers-Scherübl MC, Boutros NN, Gallinat J. Test–retest reliability of P50, N100 and P200 auditory sensory gating in healthy subjects. Int J Psychophysiol. 2008;67(2):81–90.

    Article  PubMed  Google Scholar 

  36. Fuerst DR, Gallinat J, Boutros NN. Range of sensory gating values and test-retest reliability in normal subjects. Psychophysiology. 2007;44(4):620–6.

    Article  PubMed  Google Scholar 

  37. Lijffijt M, Lane SD, Meier SL, Boutros NN, Burroughs S, Steinberg JL, et al. P50, N100, and P200 sensory gating: Relationships with behavioral inhibition, attention, and working memory. Psychophysiology. 2009;46(5):1059–68.

    Article  PubMed  Google Scholar 

  38. Rosburg T, Trautner P, Elger CE, Kurthen M. Attention effects on sensory gating—intracranial and scalp recordings. Neuroimage. 2009;48(3):554–63.

    Article  PubMed  Google Scholar 

  39. Rushby JA, Barry RJ. Single-trial event-related potentials to significant stimuli. Int J Psychophysiol. 2009;74(2):120–31.

    Article  PubMed  Google Scholar 

  40. Ritter W, Simson R, Vaughan HG, Friedman D. A brain event related to the making of a sensory discrimination. Science. 1979;203(4387):1358–61.

    Article  PubMed  CAS  Google Scholar 

  41. Wheeler Hegland KM, Pitts T, Bolser DC, Davenport P. Urge to cough with voluntary suppression following mechanical pharyngeal stimulation. Bratslavia Med J (in press).

Download references

Acknowledgment

This work was supported by NIH NIDCD T32 DC008768.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Wheeler-Hegland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wheeler-Hegland, K., Pitts, T. & Davenport, P.W. Peak Morphology and Scalp Topography of the Pharyngeal Sensory-Evoked Potential. Dysphagia 26, 287–294 (2011). https://doi.org/10.1007/s00455-010-9308-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-010-9308-y

Keywords

Navigation