Skip to main content
Log in

Touching lips and hearing fingers: effector-specific congruency between tactile and auditory stimulation modulates N1 amplitude and alpha desynchronization

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Understanding the interactions between audition and sensorimotor processes is of theoretical importance, particularly in relation to speech processing. Although one current focus in this area is on interactions between auditory perception and the motor system, there has been less research on connections between the auditory and somatosensory modalities. The current study takes a novel approach to this omission by examining specific auditory–tactile interactions in the context of speech and non-speech sound production. Electroencephalography was used to examine brain responses when participants were presented with speech syllables (a bilabial sound /pa/ and a non-labial sound /ka/) or finger-snapping sounds that were simultaneously paired with tactile stimulation of either the lower lip or the right middle finger. Analyses focused on the sensory-evoked N1 in the event-related potential and the extent of alpha band desynchronization elicited by the stimuli. N1 amplitude over fronto-central sites was significantly enhanced when the bilabial /pa/ sound was paired with tactile lip stimulation and when the finger-snapping sound was paired with tactile stimulation of the finger. Post-stimulus alpha desynchronization at central sites was also enhanced when the /pa/ sound was accompanied by tactile stimulation of the lip. These novel findings indicate that neural aspects of somatosensory–auditory interactions are influenced by the congruency between the location of the bodily touch and the bodily origin of a perceived sound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alais D, Newell FN, Mamassian P (2010) Multisensory processing in review: from physiology to behaviour. See Perceiv 23(1):3–38

    Article  Google Scholar 

  • Arsenault JS, Buchsbaum BR (2015) No evidence of somatotopic place of articulation feature mapping in motor cortex during passive speech perception. Psychon Bull Rev 23(4):1231–1240

    Article  Google Scholar 

  • Avikainen S, Forss N, Hari R (2002) Modulated activation of the human SI and SII cortices during observation of hand actions. NeuroImage 15(3):640–646

    Article  PubMed  Google Scholar 

  • Badin P, Tarabalka Y, Elisei F (2010) Can you “read” tongue movements? Evaluation of the contribution of tongue display to speech understanding. Speech Commun 52(6):493–503

    Article  Google Scholar 

  • Barraclough NE, Xiao DK, Baker CI, Oram MW, Perrett DI (2005) Integration of visual and auditory information by superior temporal sulcus neurons responsive to the sight of actions. J Cogn Neurosci 17(3):377–391

    Article  PubMed  Google Scholar 

  • Bauer M, Oostenveld R, Peeters M, Fries P (2006) Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas. J Neurosci 11 26(2):490–501

    Article  CAS  Google Scholar 

  • Beauchamp MS (2005) See me, hear me, touch me: multisensory integration in lateral occipital-temporal cortex. Curr Opin Neurobiol 15(2):145–153

    Article  CAS  PubMed  Google Scholar 

  • Behroozmand R, Shebek R, Hansen DR, Oya H, Robin DA, Howard MA, Greenlee JDW (2015) Sensory-motor networks involved in speech production and motor control: an fMRI study. NeuroImage 109:418–428

    Article  PubMed  PubMed Central  Google Scholar 

  • Bizley JK, Nodal FR, Bajo VM, Nelken I, King AJ (2007) Physiological and anatomical evidence for multisensory interactions in auditory cortex. Cereb Cortex 17(9):2172–2189

    Article  PubMed  Google Scholar 

  • Boersma P, Weenink D (2009) Praat: doing phonetics by computer (Version 5.1. 05). Retrieved 1 May 2009

  • Brett-Green BA, Miller LJ, Gavin WJ, Davies PL (2008) Multisensory integration in children: a preliminary ERP study. Brain Res 1242:283–290

    Article  CAS  PubMed  Google Scholar 

  • Bruderer AG, Danielson DK, Kandhadai P, Werker JF (2015) Sensorimotor influences on speech perception in infancy. Proc Natl Acad Sci 112(14):13531–13536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Freund H-J (2001) Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci 13(2):400–404

    CAS  PubMed  Google Scholar 

  • Callan DE, Jones JA, Callan AM, Akahane-Yamada R (2004) Phonetic perceptual identification by native- and second-language speakers differentially activates brain regions involved with acoustic phonetic processing and those involved with articulatory-auditory/orosensory internal models. NeuroImage 22(3):1182–1194

    Article  PubMed  Google Scholar 

  • Calvert GA, Thesen T (2004) Multisensory integration: methodological approaches and emerging principles in the human brain. J Physiol Paris 98(1–3):191–205

    Article  PubMed  Google Scholar 

  • Calvert GA, Brammer MJ, Bullmore ET, Campbell R, Iversen SD, David AS (1999) Response amplification in sensory-specific cortices during crossmodal binding. NeuroReport 10(2):2619–2623

    Article  CAS  PubMed  Google Scholar 

  • Calvert GA, Campbell R, Brammer MJ (2000) Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex. Curr Biol 10(12):649–657

    Article  CAS  PubMed  Google Scholar 

  • Campanella S, Belin P (2007) Integrating face and voice in person perception. Trends Cogn Sci 11(12):535–543

    Article  PubMed  Google Scholar 

  • Campbell T, Winkler I, Kujala T (2007) N1 and the mismatch negativity are spatiotemporally distinct ERP components: disruption of immediate memory by auditory distraction can be related to N1. Psychophysiology 44:530–540

    Article  PubMed  Google Scholar 

  • Champoux F, Shiller DM, Zatorre RJ (2011) Feel what you say: an auditory effect on somatosensory perception. PLoS One 6(8):e22829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheyne D, Gaetz W, Garnero L, Lachaux JP, Ducorps A, Schwartz D, Varela FJ (2003) Neuromagnetic imaging of cortical oscillations accompanying tactile stimulation. Cogn Brain Res 17(3):599–611

    Article  Google Scholar 

  • Clayson PE, Baldwin SA, Larson MJ (2013) How does noise affect amplitude and latency measurement of event-related potentials (ERPs)? A methodological critique and simulation study. Psychophysiology 50(2):174–186

    Article  PubMed  Google Scholar 

  • Correia JM, Jansma BMB, Bonte M (2015) Decoding articulatory features from fMRI responses in dorsal speech regions. J Neurosci 35(45):15015–15025

    Article  CAS  PubMed  Google Scholar 

  • D’Ausilio A, Bartoli E, Maffongelli L, Berry JJ, Fadiga L (2014) Vision of tongue movements bias auditory speech perception. Neuropsychologia 63:85–91

    Article  PubMed  Google Scholar 

  • Della Penna S, Torquati K, Pizzella V, Babiloni C, Franciotti R, Rossini PM, Romani GL (2004) Temporal dynamics of alpha and beta rhythms in human SI and SII after galvanic median nerve stimulation. A MEG study. NeuroImage 22(4):1438–1446

    Article  CAS  PubMed  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21

    Article  PubMed  Google Scholar 

  • Deschrijver E, Wiersema JR, Brass M (2016) The interaction between felt touch and tactile consequences of observed actions: an action-based somatosensory congruency paradigm. Soc Cogn Affect Neurosci 11(7):1162–1172

    Article  PubMed  Google Scholar 

  • Dockstader C, Gaetz W, Cheyne D, Wang F, Castellanos FX, Tannock R (2008) MEG eventrelated desynchronization and synchronization deficits during basic somatosensory processing in individuals with ADHD. Behav Brain Funct 4(1):8

    Article  PubMed  PubMed Central  Google Scholar 

  • Doehrmann O, Naumer MJ (2008) Semantics and the multisensory brain: how meaning modulates processes of audio-visual integration. Brain Res 1242:136–150

    Article  CAS  PubMed  Google Scholar 

  • Driver J, Noesselt T (2008) Multisensory interplay reveals crossmodal influences on ‘sensory specific’ brain regions, neural responses, and judgments. Neuron 57(1):11–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eulitz C, Diesch E, Pantev C, Hampson S, Elbert T (1995) Magnetic and electric brain activity evoked by the processing of tone and vowel stimuli. J Neurosci 15(4):2748–2755

    CAS  PubMed  Google Scholar 

  • Foxe JJ, Simpson GV, Ahlfors SP (1998) Parieto-occipital approximately 10 Hz activity reflects anticipatory state of visual attention mechanisms. NeuroReport 9(17):3929–3933

    Article  CAS  PubMed  Google Scholar 

  • Foxe JJ, Morocz IA, Murray MM, Higgins BA, Javitt DC, Schroeder CE (2000) Multisensory auditory-somatosensory interactions in early cortical processing revealed by high-density electrical mapping. Brain Res Cogn Brain Res 10(1–2):77–83

    Article  CAS  PubMed  Google Scholar 

  • Fujioka T, Ross B (2008) Auditory processing indexed by stimulus-induced alpha desynchronization in children. Int J Psychophysiol 68(2):130–140

    Article  PubMed  Google Scholar 

  • Gazzola V, Aziz-Zadeh L, Keysers C (2006) Empathy and the somatotopic auditory mirror system in humans. Curr Biol 16(18):1824–1829

    Article  CAS  PubMed  Google Scholar 

  • Gick B, Derrick D (2009) Aero-tactile integration in speech perception. Nature 462(7272):502–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gick B, Ikegami Y, Derrick D (2010) The temporal window of audio-tactile integration in speech perception. J Acoust Soc Am 128(5):342–346

    Article  Google Scholar 

  • Hartcher-O’Brien J, Soto-faraco S, Adam R (2017) Editorial: a matter of bottom-up or top-down processes: the role of attention in multisensory integration. Front Integr Neurosci 11:5. doi:10.3389/fnint.2017.00005

    Google Scholar 

  • Hasson U, Nir Y, Levy I, Fuhrmann G, Malach R (2004) Intersubject synchronization of cortical activity during natural vision. Science 303(5664):1634–1640

    Article  CAS  PubMed  Google Scholar 

  • Henschke JU, Noesselt T, Scheich H, Budinger E (2015) Possible anatomical pathways for short-latency multisensory integration processes in primary sensory cortices. Brain Struct Funct 22(2):955–977

    Article  Google Scholar 

  • Hickok G (2014) The myth of mirror neurons: the real neuroscience of communication and cognition. WW Norton & Company, New York

    Google Scholar 

  • Hickok G, Houde J, Rong F (2011) Sensorimotor integration in speech processing: computational basis and neural organization. Neuron 69(3):407–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann S, Falkenstein M (2008) The correction of eye blink artefacts in the EEG: a comparison of two prominent methods. PLoS One 3(8):e3004

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito T, Ostry DJ (2012) Speech sounds alter facial skin sensation. J Neurophysiol 107(1):442–447

    Article  PubMed  Google Scholar 

  • Ito T, Gracco VL, Ostry DJ (2014) Temporal factors affecting somatosensory-auditory interactions in speech processing. Front Psychol 5(10):1–10

    CAS  Google Scholar 

  • Kayser C, Petkov CI, Augath M, Logothetis NK (2005) Integration of touch and sound in auditory cortex. Neuron 48(2):373–384

    Article  CAS  PubMed  Google Scholar 

  • Kayser C, Petkov CI, Logothetis NK (2008) Visual modulation of neurons in auditory cortex. Cereb Cortex 18(7):1560–1574

    Article  PubMed  Google Scholar 

  • Keysers C, Kaas JH, Gazzola V (2010) Somatosensation in social perception. Nat Rev Neurosci 11(6):417–428

    Article  CAS  PubMed  Google Scholar 

  • Kuhl PK, Meltzoff AN (1982) The bimodal perception of speech in infancy. Science 218(4577):1138–1141

  • Kuhl PK, Meltzoff AN (1984) The intermodal representation of speech in infants. Infant Behav Dev 7(3):361–381

    Article  Google Scholar 

  • Kuhl PK, Meltzoff AN (1996) Infant vocalizations in response to speech: vocal imitation and developmental change. J Acoust Soc Am 100(4):2425–2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhl PK, Ramirez RR, Bosseler A, Lin JF, Imada T (2014) Infants’ brain responses to speech suggest analysis by synthesis. Proc Natl Acad Sci 111(31):11238–11245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahav A, Saltzman E, Schlaug G (2007) Action representation of sound: audiomotor recognition network while listening to newly acquired actions. J Neurosci 27(2):308–314

    Article  CAS  PubMed  Google Scholar 

  • Lakatos P, Chen CM, O’Connell MN, Mills A, Schroeder CE (2007) Neuronal oscillations and multisensory interaction in primary auditory cortex. Neuron 53(2):279–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange J, Oostenveld R, Fries P (2011) Perception of the touch-induced visual double-flash illusion correlates with changes of rhythmic neuronal activity in human visual and somatosensory areas. Neuroimage 15 54(2):1395–1405

    Article  Google Scholar 

  • Lange J, Christian N, Schnitzler A (2013) Audio-visual congruency alters power and coherence of oscillatory activity within and between cortical areas. NeuroImage 79:111–120

    Article  PubMed  Google Scholar 

  • Macaluso E, Driver J (2005) Multisensory spatial interactions: a window onto functional integration in the human brain. Trends Neurosci 28(5):264–271

    Article  CAS  PubMed  Google Scholar 

  • Macaluso E, Noppeney U, Talsma D, Vercillo T, Hartcher-O’Brien J, Adam R (2016) The curious incident of attention in multisensory integration: bottom-up vs top-down. Multisens Res 29(6–7):557–583

    Article  Google Scholar 

  • Makeig S (1993) Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalogr Clin Neurophysiol 86(4):283–293

    Article  CAS  PubMed  Google Scholar 

  • Marshall PJ, Meltzoff AN (2015) Body maps in the infant brain. Trends Cogn Sci 19(9):499–505

    Article  PubMed  PubMed Central  Google Scholar 

  • McGurk H, MacDonald J (1976) Hearing lips and seeing voices. Nature 264(5588):746–748

    Article  CAS  PubMed  Google Scholar 

  • Meltzoff AN, Moore MK (1997) Explaining facial imitation: a theoretical model. Early Dev Parent 6(3–4):179

    Article  PubMed  PubMed Central  Google Scholar 

  • Molholm S, Ritter W, Javitt DC, Foxe JJ (2004) Multisensory visual-auditory object recognition in humans: a high-density electrical mapping study. Cereb Cortex 14(4):452–465

    Article  PubMed  Google Scholar 

  • Möttönen R, Järveläinen J, Sams M, Hari R (2005) Viewing speech modulates activity in the left SI mouth cortex. NeuroImage 24(3):731–737

    Article  PubMed  Google Scholar 

  • Müller N, Weisz N (2012) Lateralized auditory cortical alpha band activity and interregional connectivity pattern reflect anticipation of target sounds. Cereb Cortex 22(7):1604–1613

    Article  PubMed  Google Scholar 

  • Murray MM, Molholm S, Michel CM, Heslenfeld DJ, Ritter W, Javitt DC, Foxe JJ (2005) Grabbing your ear: rapid auditory-somatosensory multisensory interactions in low-level sensory cortices are not constrained by stimulus alignment. Cereb Cortex 15(7):963–974

    Article  PubMed  Google Scholar 

  • Näätänen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24:375–425

    Article  PubMed  Google Scholar 

  • Nishimura S, Tomita Y, Tanaka T, Kasagi S, Takashima S, Takeshita K (1986) Developmental change of short latency somatosensory evoked potential waves between P3 and N1 components in children. Brain Dev 8(1):6–9

    Article  CAS  PubMed  Google Scholar 

  • Paulus M, Hunnius S, Van Elk M, Bekkering H (2012) How learning to shake a rattle affects 8-month-old infants’ perception of the rattle’s sound: electrophysiological evidence for action-effect binding in infancy. Dev Cogn Neurosci 2(1):90–96

    Article  PubMed  Google Scholar 

  • Pihko E, Nevalainen P, Stephen J, Okada Y, Lauronen L (2009) Maturation of somatosensory cortical processing from birth to adulthood revealed by magnetoencephalography. Clin Neurophysiol 120(8):1552–1561

    Article  PubMed  Google Scholar 

  • Pizzamiglio L, Aprile T, Spitoni G, Pitzalis S, Bates E, D’Amico S, Di Russo F (2005) Separate neural systems for processing action- or non-action-related sounds. NeuroImage 24(3):852–861

    Article  CAS  PubMed  Google Scholar 

  • Plöchl M, Gaston J, Mermagen T, König P, Hairston WD (2016) Oscillatory activity in auditory cortex reflects the perceptual level of audio-tactile integration. Sci Rep 6:33693

    Article  PubMed  PubMed Central  Google Scholar 

  • Pulvermüller F, Fadiga L (2010) Active perception: sensorimotor circuits as a cortical basis for language. Nat Rev Neurosci 11(5):351–360

    Article  PubMed  Google Scholar 

  • Pulvermüller F, Huss M, Kherif F, del Prado M, Martin F, Hauk O, Shtyrov Y (2006) Motor cortex maps articulatory features of speech sounds. Proc Natl Acad Sci USA 103(2):7865–7870

    Article  PubMed  PubMed Central  Google Scholar 

  • Ro T, Hsu J, Yasar NE, Elmore LC, Beauchamp MS (2009) Sound enhances touch perception. Exp Brain Res 195(1):135–143

    Article  PubMed  Google Scholar 

  • Ro T, Ellmore TM, Beauchamp MS (2012) A neural link between feeling and hearing. Cereb Cortex 23(7):1724–1730

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossi S, Tecchio F, Pasqualetti P, Ulivelli M, Pizzella V, Romani G, Rossini P (2002) Somatosensory processing during movement observation in humans. Clin Neurophysiol 113(1):16–24

    Article  CAS  PubMed  Google Scholar 

  • Russo N, Foxe JJ, Brandwein AB, Altschuler T, Gomes H, Molholm S (2010) Multisensory processing in children with autism: high-density electrical mapping of auditory–somatosensory integration. Autism Res 3(5):253–267

    Article  PubMed  Google Scholar 

  • Saby JN, Meltzoff AN, Marshall PJ (2013) Infants’ somatotopic neural responses to seeing human actions: i’ve got you under my dkin. PLoS One 8(10):e77905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadaghiani S, Kleinschmidt A (2016) Brain networks and α- oscillations: structural and functional foundations of cognitive control. Trends Cogn Sci 20(11):805–817

    Article  PubMed  Google Scholar 

  • Schomers MR, Pulvermüller F (2016) Is the sensorimotor cortex relevant for speech perception and understanding? An integrative review. Front Hum Neurosci 10(9):435

    PubMed  PubMed Central  Google Scholar 

  • Schubert R, Haufe S, Blankenburg F, Villringer A, Curio G (2008) Now you’ll feel It-now You won’t: EEG rhythms predict the effectiveness of perceptual masking. J Cogn Neurosci 21:2407–2419

    Article  Google Scholar 

  • Senkowski D, Talsma D, Grigutsch M, Herrmann CS, Woldorff MG (2007) Good times for multisensory integration: effects of the precision of temporal synchrony as revealed by gamma-band oscillations. Neuropsychologia 45(3):561–571

    Article  PubMed  Google Scholar 

  • Shen G, Saby JN, Drew AR, Marshall PJ (2017) Exploring potential social influences on brain potentials during anticipation of tactile dtimulation. Brain Res 1659:8–18

    Article  CAS  PubMed  Google Scholar 

  • Stanford TR, Stein BE (2007) Superadditivity in multisensory integration: putting the computation in context. NeuroReport 18(8):787–792

    Article  PubMed  Google Scholar 

  • Stein BE, Stanford TR (2008) Multisensory integration: current issues from the perspective of the single neuron. Nature Rev Neurosci 9(4):255

    Article  CAS  Google Scholar 

  • Talsma D, Senkowski D, Soto-Faraco S, Woldorff MG (2010) The multifaceted interplay between attention and multisensory integration. Trends Cogn Sci 14(9):400–410

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas R, Sink J, Haggard P (2013) Sensory effects of action observation. Exp Psycol 60(5):335–346

    Article  Google Scholar 

  • Tiihonen J, Hari R, Kajola M, Karhu J, Ahlfors S, Tissari S (1991) Magnetoencephalographic 10-Hz rhythm from the human auditory cortex. Neurosci Lett 129(2):303–305

    Article  CAS  PubMed  Google Scholar 

  • Tiitinen H, Sivonen P, Alku P, Virtanen J, Näätänen R (1999) Electromagnetic recordings reveal latency differences in speech and tone processing in humans. Cogn Brain Res 8(3):355–363

    Article  CAS  Google Scholar 

  • Töllner T, Gramann K, Müller HJ, Eimer M (2009) The anterior N1 component as an index of modality shifting. J Cogn Neurosci 21(9):1653–1669

    Article  PubMed  Google Scholar 

  • Tsilionis E, Vatakis A (2016) Multisensory binding: is the contribution of synchrony and semantic congruency obligatory? Current Opinion Behav Sci 8:7–13

    Article  Google Scholar 

  • van Atteveldt N, Formisano E, Goebel R, Blomert L (2004) Integration of letters and speech sounds in the human brain. Neuron 43(2):271–282

    Article  PubMed  Google Scholar 

  • Van Atteveldt NM, Formisano E, Blomert L, Goebel R (2007) The effect of temporal asynchrony on the multisensory integration of letters and speech sounds. Cereb Cortex 17(4):962–974

    Article  PubMed  Google Scholar 

  • Virtanen J, Ahveninen J, Ilmoniemi RJ, Näätänen R, Pekkonen E (1998) Replicability of MEG and EEG measures of the auditory N1/N1m-response. Electroencephalogr Clin Neurophysiol 108(3):291–298

    Article  CAS  PubMed  Google Scholar 

  • Welch RB (1999) Meaning, attention, and the “unity assumption” in the intersensory bias of spatial and temporal perceptions. Adv Psychol 129:371–387

    Article  Google Scholar 

  • Wheaton KJ, Thompson JC, Syngeniotis A, Abbott DF, Puce A (2004) Viewing the motion of human body parts activates different regions of premotor, temporal, and parietal cortex. NeuroImage 22(1):277–288

    Article  PubMed  Google Scholar 

  • Wilson SM, Saygin AP, Sereno MI, Iacoboni M (2004) Listening to speech activates motor areas involved in speech production. Nat Neurosci 7(7):701–702

    Article  CAS  PubMed  Google Scholar 

  • Wilson EC, Braida LD, Reed CM (2010) Perceptual interactions in the loudness of combined auditory and vibrotactile stimuli. J Acoust Soc Am 127(5):3038–3043

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright TM, Pelphrey KA, Allison T, McKeown MJ, McCarthy G (2003) Polysensory interactions along lateral temporal regions evoked by audiovisual speech. Cereb Cortex 13(10):1034–1043

    Article  PubMed  Google Scholar 

  • Wu C, Stefanescu RA, Martel DT, Shore SE (2015) Listening to another sense: somatosensory integration in the auditory system. Cell Tissue Res 361(1):233–250

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Ashley Drew, Staci Weiss, Rebecca Laconi, Jeb Taylor and Rebecca Feldman for their help with data collection. The writing of this article was supported in part by awards from the National Institutes of Health (1R21HD083756) and the National Science Foundation (BCS-1460889 and SMA-1540619).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guannan Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, G., Meltzoff, A.N. & Marshall, P.J. Touching lips and hearing fingers: effector-specific congruency between tactile and auditory stimulation modulates N1 amplitude and alpha desynchronization. Exp Brain Res 236, 13–29 (2018). https://doi.org/10.1007/s00221-017-5104-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-017-5104-3

Keywords

Navigation