Skip to main content

Advertisement

Log in

Effects of Age and Stimulus on Submental Mechanomyography Signals During Swallowing

  • Original Article
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

Mechanomyography (MMG) is the measurement of the vibrations associated with muscle contraction. As an indicator of muscle activity in swallowing, MMG has several potential advantages over conventional electromyography (EMG), including robustness to variations in sensor placement, perspiration, and food spillage. The objective of this study was to investigate the effects of participant age and stimulus on submental muscle activity as measured by MMG. Nasal airflow was utilized as a reference signal. Four liquid stimuli were investigated: water, nectar-thick and honey-thick apple juices, and a thin-liquid barium suspension. Each of 15 healthy adults completed nine swallowing sequences, each consisting of four discrete swallows via a self-administered cup-drinking task, with an MMG sensor at a midline submental location and a nasal cannula at the nares. Muscle activity and swallowing apneas in the signals were identified with pseudo-automatic segmentation algorithms. Various timing and amplitude features were extracted from each segmented swallow. Muscle activity onset preceded the onset of swallow apnea. Significant main effects of stimulus were found for the duration of muscle activity and for the time difference between the offsets of muscle activity and swallow apnea. No other main or interaction effects were significant. In general, the timing and amplitude variations of submental muscle activity revealed by MMG seem to agree with previously reported findings using EMG. The minor discrepancies between the results of this study and those of previous EMG studies are likely due to differences in experimental tasks. MMG may serve as an alternative measure of muscle activity during swallowing and further investigation is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Orizio C. Muscle sound: bases for the introduction of a mechanomyographic signal in muscle studies. Crit Rev Biomed Eng. 1993;21:201–43.

    PubMed  CAS  Google Scholar 

  2. Silva J, Heim W, Chau T. A self-contained, mechanomyography-driven externally powered prosthesis. Arch Phys Med Rehabil. 2005;86:2066–70. doi:10.1016/j.apmr.2005.03.034.

    Article  PubMed  Google Scholar 

  3. Ouamer M, Boiteux M, Petitjean M, Travens L, Sales A. Acoustic myography during voluntary isometric contraction reveals non-propagative lateral vibration. J Biomech. 1999;32:1279–85. doi:10.1016/S0021-9290(99)00132-3.

    Article  PubMed  CAS  Google Scholar 

  4. Barry DT, Leonard JA, Gitter AJ, Ball RD. Acoustic myography as a control signal for an externally powered prosthesis. Arch Phys Med Rehabil. 1986;67:267–9.

    PubMed  CAS  Google Scholar 

  5. Miller AJ. Deglutition. Physiol Rev. 1982;62:129–84.

    PubMed  CAS  Google Scholar 

  6. Jean A. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev. 2001;81:929–69.

    PubMed  CAS  Google Scholar 

  7. Crary MA, Baldwin BO. Surface electromyographic characteristics of swallowing in dysphagia secondary to brainstem stroke. Dysphagia. 1997;12:180–7. doi:10.1007/PL00009534.

    Article  PubMed  CAS  Google Scholar 

  8. Ertekin C, Turman B, Tarlaci S, Celik M, Aydogdu I, Secil Y, et al. Cricopharyngeal sphincter muscle responses to transcranial magnetic stimulation in normal subjects and in patients with dysphagia. Clin Neurophysiol. 2001;112:86–94. doi:10.1016/S1388-2457(00)00504-6.

    Article  PubMed  CAS  Google Scholar 

  9. McKeown MJ, Torpey DC, Gehm WC. Non-invasive monitoring of functionally distinct muscle activations during swallowing. Clin Neurophysiol. 2002;113:354–66. doi:10.1016/S1388-2457(02)00007-X.

    Article  PubMed  Google Scholar 

  10. Perlman AL, Palmer PM, McCulloch TM, Vandaele DJ. Electromyographic activity from human laryngeal, pharyngeal and submental muscles during swallowing. J Appl Physiol. 1999;86:1663–9.

    PubMed  CAS  Google Scholar 

  11. Herzog W, Zhang YT, Vax MA, Guimaraes ACS, Janssen C. Assessment of muscular fatigue using vibromyography. Muscle Nerve. 1994;17:1156–61. doi:10.1002/mus.880171005.

    Article  PubMed  CAS  Google Scholar 

  12. Petitjean M, Maton B, Cnockaert JC. Evaluation of human dynamic contraction by phonomyography. J Appl Physiol. 1992;73:2567–73.

    PubMed  CAS  Google Scholar 

  13. Tarata MT. Mechanomyography versus electromyography, in monitoring the muscular fatigue. Biomed Eng Online 2003;2:3.

    Google Scholar 

  14. Perry SR, Housh TJ, Weir JP, Johnson GO, Bull AJ, Ebersole KT. Mean power frequency and amplitude of the mechanomyographic and electromyographic signals during incremental cycle ergometry. J Electromyogr Kinesiol. 2001;11:299–305. doi:10.1016/S1050-6411(00)00057-2.

    Article  PubMed  CAS  Google Scholar 

  15. Zwarts MJ, Keidel M. Relationship between electrical and vibratory output of muscle during voluntary contraction and fatigue. Muscle Nerve. 1991;14:756–61. doi:10.1002/mus.880140810.

    Article  PubMed  CAS  Google Scholar 

  16. Morimoto S, Takemori S. Initial mechanomyographical signals from twitching fibres of human skeletal muscle. Acta Physiol (Oxf). 2007;191:319–27. doi:10.1111/j.1748-1716.2007.01743.x.

    Article  CAS  Google Scholar 

  17. Mckay WPS, Jacobson P, Chilibeck PD, Daku BLF. Effects of graded levels of exercise on ipsilateral and contralateral post-exercise resting rectus femoris mechanomyography. Eur J Appl Physiol. 2006;98:566–74. doi:10.1007/s00421-006-0301-y.

    Article  PubMed  Google Scholar 

  18. Nonaka H, Mita K, Akataki K, Watakabe M, Itoh Y. Sex differences in mechanomyographic responses to voluntary isometric contractions. Med Sci Sports Exerc. 2006;38:1311–6. doi:10.1249/01.mss.0000227317.31470.16.

    Article  PubMed  Google Scholar 

  19. Silva J, Chau T. A mathematical model for source separation of MMG signals recorded with a coupled microphone-accelerometer sensor pair. IEEE Trans Biomed Eng. 2005;52:1493–501. doi:10.1109/TBME.2005.851531.

    Article  PubMed  Google Scholar 

  20. Madeleine P, Tuker K, Arendt-Nielsen L, Farina D. Heterogeneous mechanomyographic absolute activation of paraspinal muscles assessed by a two-dimensional array during short and sustained contractions. J Biomech. 2007;40:2663–71. doi:10.1016/j.jbiomech.2006.12.011.

    Article  PubMed  Google Scholar 

  21. Gorelick ML, Brown JMM. Mechanomyographic assessment of contractile properties within seven segments of the human deltoid muscle. Eur J Appl Physiol. 2007;100:35–44. doi:10.1007/s00421-007-0397-8.

    Article  PubMed  CAS  Google Scholar 

  22. Huang CY, Wang CH, Hwang IS. Characterization of the mechanical and neural components of spastic hypertonia with modified H reflex. J Electromyogr Kinesiol. 2006;16:384–91. doi:10.1016/j.jelekin.2005.09.001.

    Article  PubMed  Google Scholar 

  23. Gobbo M, Ce E, Diemont B, Esposito F, Orizio C. Torque and surface mechanomyogram parallel reduction during fatiguing stimulation in human muscles. Eur J Appl Physiol. 2006;97:9–15. doi:10.1007/s00421-006-0134-8.

    Article  PubMed  Google Scholar 

  24. Klahn MS, Perlman AL. Temporal and durational patterns associating respiration and swallowing. Dysphagia. 1999;14:131–8. doi:10.1007/PL00009594.

    Article  PubMed  CAS  Google Scholar 

  25. Perlman AL, Ettema SL, Barkmeier J. Respiratory and acoustic signals associated with bolus passage during swallowing. Dysphagia. 2000;15:89–94.

    PubMed  CAS  Google Scholar 

  26. Perlman AL, He X, Barkmeier J, Leer EV. Bolus location associated with videofluoroscopic and respirodeglutometric events. J Speech Lang Hear Res. 2005;48:21–33. doi:10.1044/1092-4388(2005/003).

    Article  PubMed  Google Scholar 

  27. Adnerhill I, Ekberg O, Groher ME. Determining normal bolus size for thin liquids. Dysphagia. 1989;4:1–3. doi:10.1007/BF02407395.

    Article  PubMed  CAS  Google Scholar 

  28. Bennett JW, Steele CM. An examination of normal sip size behaviour in a natural drinking condition versus instructed experimental conditions. 15th annual Dysphagia Research Society meeting. Vancouver, BC, 2007, p. 387.

  29. Silva J, Chau T. Coupled microphone–accelerometer sensor pair for dynamic noise reduction in MMG signal recording. Electron Lett. 2003;39:1496–8.

    Article  CAS  Google Scholar 

  30. Orizio C, Liberati D, Locatelli C, De Grandis D, Veicsteinas A. Surface mechanomyogram reflects muscle fibres twitches summation. J Biomech. 1996;29:475–81. doi:10.1016/0021-9290(95)00063-1.

    Article  PubMed  CAS  Google Scholar 

  31. Martin-Harris B, Brodsky MB, Michel Y, Ford CL, Walters B, Heffner J. Breathing and swallowing dynamics across the adult lifespan. Arch Otolaryngol Head Neck Surg. 2005;131:762–70. doi:10.1001/archotol.131.9.762.

    Article  PubMed  Google Scholar 

  32. Arnold M, Doering A, Witte H, Dorschel J, Eisel M. Use of adaptive Hilbert transformation for EEG segmentation and calculation of instantaneous respiration rate in neonates. J Clin Monit. 1996;12:43–60. doi:10.1007/BF02025311.

    Article  PubMed  CAS  Google Scholar 

  33. Blackledge JM. Digital signal processing: mathematical and computational methods, software development and applications. 2nd ed. Chicester, UK: Horwood Publishing; 2006.

    Google Scholar 

  34. Choi S, Jiang Z. Comparison of envelope extraction algorithms for cardiac sound signal segmentation. Expert Syst Appl. 2008;34:1056–69. doi:10.1016/j.eswa.2006.12.015.

    Article  Google Scholar 

  35. Martinez-Alajarin J, Ruiz-Merino R. Efficient method for events detection in phonocardiographic signals. SPIE. 2005;5839;398–409.

    Google Scholar 

  36. Xu J, Durand LG, Pibarot P. Nonlinear transient chirp signal modeling of the aortic and pulmonary components of the second heart sound. IEEE Trans Biomed Eng. 2000;47:1328–35.

    Article  PubMed  CAS  Google Scholar 

  37. Abbink JH, Van Der Bilt A, Van Der Glas HW. Detection of onset and termination of muscle activity in surface electromyograms. J Oral Rehabil. 1998;25:365–9. doi:10.1046/j.1365-2842.1998.00242.x.

    Article  PubMed  CAS  Google Scholar 

  38. Wilen J, Sisto SA, Kirshblum S. Algorithm for the detection of muscle activation in surface electromyograms during periodic activity. Ann Biomed Eng. 2002;30:97–106. doi:10.1114/1.1430750.

    Article  PubMed  Google Scholar 

  39. Donoho DL, Johnstone IM. Adapting to unknown smoothness via wavelet shrinkage. J Am Stat Assoc. 1995;90:1200–24. doi:10.2307/2291512.

    Article  Google Scholar 

  40. Ahlstrom C, Lanne T, Ask P, Johansson A. A method for accurate localization of the first heart sound and possible applications. Physiol Meas. 2008;29:417–28. doi:10.1088/0967-3334/29/3/011.

    Article  PubMed  CAS  Google Scholar 

  41. Bailon R, Sornmo L, Laguna P. A robust method for ECG-based estimation of the respiratory frequency during stress testing. IEEE Trans Biomed Eng. 2006;53:1273–85. doi:10.1109/TBME.2006.871888.

    Article  PubMed  Google Scholar 

  42. Roberts MJ, Russo R. A student’s guide to analysis of variance. London: Routledge; 1999.

    Google Scholar 

  43. Kotrlik JW, Williams HA. The incorporation of effect size in information technology, learning, and performance research. Inf Technol Learn Perform J. 2003;21:1–7.

    Google Scholar 

  44. Daniels SK, Foundas AL. Swallowing physiology of sequential straw drinking. Dysphagia. 2001;16:176–82. doi:10.1007/s00455-001-0061-0.

    Article  PubMed  CAS  Google Scholar 

  45. Ding R, Logemann J, Larson CR, Rademaker AW. The effects of taste and consistency on swallow physiology in younger and older healthy individuals: a surface electromyographic study. J Speech Lang Hear Res. 2003;46:977–89. doi:10.1044/1092-4388(2003/076).

    Article  PubMed  Google Scholar 

  46. Vaiman M, Eviatar E, Segal S. Surface electromyographic studies of swallowing in normal subjects: a review of 440 adults. Report 2. Quantitative data: amplitude measures. Otolaryngol Head Neck Surg 2004;131:773–80. doi:10.1016/j.otohns.2004.03.014.

  47. Esposito F, Malgrati D, Veicsteinas A, Orizio C. Time and frequency domain analysis of electromyogram and sound myogram in the elderly. Eur J Appl Physiol Occup Physiol. 1996;73:503–10. doi:10.1007/BF00357671.

    Article  PubMed  CAS  Google Scholar 

  48. Huang RP, Rubin CT, McLeod KJ. Changes in postural muscle dynamics as a function of age. J Gerontol A Biol Sci Med Sci. 1999;54:B352–B357.

    PubMed  CAS  Google Scholar 

  49. McLeod KJ, Stewart JM. Muscle dynamics measurements as an early indicator of individuals at high risk for developing osteoporosis. Osteoporos Int. 2003;14(Suppl 7):S81–S82. doi:10.1007/s00198-003-1540-y.

    Google Scholar 

  50. Vaiman M, Eviatar E, Segal S. Evaluation of normal deglutition with the help of rectified surface electromyography records. Dysphagia. 2004;19:125–32. doi:10.1007/s00455-003-0504-x.

    Article  PubMed  Google Scholar 

  51. Vaiman M, Eviatar E, Segal S. Surface electromyographic studies of swallowing in normal subjects: a review of 440 adults. Report 1. Quantitative data: timing measures. Otolaryngol Head Neck Surg. 2004;131:548–55. doi:10.1016/j.otohns.2004.03.013.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catriona M. Steele.

Additional information

C. M. Steele is a Canadian Institutes of Health Research New Investigator in Aging.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Chau, T. & Steele, C.M. Effects of Age and Stimulus on Submental Mechanomyography Signals During Swallowing. Dysphagia 24, 265–273 (2009). https://doi.org/10.1007/s00455-008-9200-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-008-9200-1

Keywords

Navigation