Skip to main content
Log in

The Realizability of Curves in a Tropical Plane

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Let E be a plane in an algebraic torus \( (K^*)^n \) over an algebraically closed field K. Given a balanced 1-dimensional fan C in the tropicalization of E, i. e. in the Bergman fan of the corresponding matroid, we give a complete algorithmic answer to the question whether or not C can be realized as the tropicalization of an algebraic curve contained in E. Moreover, in the case of realizability the algorithm also determines the dimension of the moduli space of all algebraic curves in E tropicalizing to C, a concrete simple example of such a curve, and whether C can also be realized by an irreducible algebraic curve in E. In the first important case when E is a general plane in a 3-dimensional torus we also use our algorithm to prove some general criteria for C that imply its realizability resp. non-realizability. They include and generalize the main known obstructions by Brugallé-Shaw and Bogart-Katz coming from tropical intersection theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Allermann, L., Rau, J.: First steps in tropical intersection theory. Math. Z. 264(3), 633–670 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ardila, F., Klivans, C.: The Bergman complex of a matroid and phylogenetic trees. J. Comb. Theory Ser. B 96(1), 38–49 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bieri, R., Groves, J.: A rigidity property for the set of all characters induced by valuations. Trans. Am. Math. Soc. 294, 425–434 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Birkmeyer, A.L.: realizationMatroids.lib—a Singular library for relative realizability questions on tropical curves. http://www.mathematik.uni-kl.de/~gathmann/matroids.php (2012)

  5. Birkmeyer, A.L., Gathmann, A.: Realizability of tropical curves in a plane in the non-constant coefficient case. http://arxiv.org/abs/1412.3035 (2014)

  6. Bogart, T., Katz, E.: Obstructions to lifting tropical curves in surfaces in 3-space. SIAM J. Discrete Math. 26, 1050–1067 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brodsky, S., Joswig, M., Morrison, R., Sturmfels, B.: Moduli of tropical plane curves. Res. Math. Sci. 2 (2015)

  8. Brugallé, E., Shaw, K.: Obstructions to approximating tropical curves in surfaces via intersection theory. Can. J. Math. 67(3), 527–572 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cartwright, D., Dudzik, A., Manjunath, M., Yao, Y.: Embeddings and immersions of tropical curves. Collect. Math. 67(1), 1–19 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cox, D., Little, J., Schenck, H.: Toric Varieties. American Mathematical Society (AMS), Providence, RI (2011)

    Book  MATH  Google Scholar 

  11. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular—a computer algebra system for polynomial computations. http://www.singular.uni-kl.de

  12. Einsiedler, M., Kapranov, M., Lind, D.: Non-Archimedean amoebas and tropical varieties. J. Reine Angew. Math. 601, 139–157 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Eisenbud, D.: Commutative Algebra with a View Towards Algebraic Geometry. Springer, New York (1995)

    MATH  Google Scholar 

  14. François, G.: Tropical intersection products and families of tropical curves. Ph.D. thesis, University of Kaiserslautern (2012). https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3350

  15. François, G., Rau, J.: The diagonal of tropical matroid varieties and cycle intersections. Collect. Math. 64(2), 185–210 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fulton, W.: Intersection Theory. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  17. Fulton, W., Sturmfels, B.: Intersection theory on toric varieties. Topology 36(2), 335–353 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gathmann, A., Kerber, M., Markwig, H.: Tropical fans and the moduli space of rational tropical curves. Compos. Math. 145(1), 173–195 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hartshorne, R.: Algebraic Geometry. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  20. Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry. American Mathematical Society (AMS), Providence, RI (2015)

    MATH  Google Scholar 

  21. Mikhalkin, G.: Decomposition into pairs-of-pants for complex algebraic hypersurfaces. Topology 43(5), 1035–1065 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nishinou, T., Siebert, B.: Toric degenerations of toric varieties and tropical curves. Duke Math. J. 135, 1–51 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Oxley, J.: Matroid Theory. Oxford University Press, Oxford (1992)

    MATH  Google Scholar 

  24. Rau, J.: Intersections on tropical moduli spaces. http://arxiv.org/abs/0812.3678 (2008)

  25. Rau, J.: Tropical intersection theory and gravitational descendants. Ph.D. thesis, University of Kaiserslautern (2009). https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2122

  26. Shaw, K.: A tropical intersection product in matroidal fans. SIAM J. Discrete Math. 27(1), 459–491 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Speyer, D.: Tropical geometry. Ph.D. thesis, University of California, Berkeley (2005). http://www-personal.umich.edu/~speyer/thesis.pdf

  28. Speyer, D.: Uniformizing tropical curves I: genus zero and one. Algebra Number Theory 8, 963–998 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sturmfels, B.: Solving systems of polynomial equations. In: CBMS Regional Conference Series in Mathematics 97. American Mathematical Society, New York (2002)

  30. Sturmfels, B., Tevelev, J.: Elimination theory for tropical varieties. Math. Res. Lett. 15(3), 543–562 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ziegler, G.M.: Lectures on Polytopes. Springer-Verlag, New York (2002)

    MATH  Google Scholar 

Download references

Acknowledgments

Kirsten Schmitz has been supported by the DFG Grant Ga 636/3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Gathmann.

Additional information

Editor in Charge: János Pach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birkmeyer, A.L., Gathmann, A. & Schmitz, K. The Realizability of Curves in a Tropical Plane. Discrete Comput Geom 57, 12–55 (2017). https://doi.org/10.1007/s00454-016-9816-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-016-9816-0

Keywords

Mathematics Subject Classification

Navigation