Skip to main content
Log in

The Maximum Clique Problem in Multiple Interval Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Multiple interval graphs are variants of interval graphs where instead of a single interval, each vertex is assigned a set of intervals on the real line. We study the complexity of the MAXIMUM CLIQUE problem in several classes of multiple interval graphs. The MAXIMUM CLIQUE problem, or the problem of finding the size of the maximum clique, is known to be NP-complete for t-interval graphs when t≥3 and polynomial-time solvable when t=1. The problem is also known to be NP-complete in t-track graphs when t≥4 and polynomial-time solvable when t≤2. We show that MAXIMUM CLIQUE is already NP-complete for unit 2-interval graphs and unit 3-track graphs. Further, we show that the problem is APX-complete for 2-interval graphs, 3-track graphs, unit 3-interval graphs and unit 4-track graphs. We also introduce two new classes of graphs called t-circular interval graphs and t-circular track graphs and study the complexity of the MAXIMUM CLIQUE problem in them. On the positive side, we present a polynomial time t-approximation algorithm for MAXIMUM WEIGHTED CLIQUE on t-interval graphs, improving earlier work with approximation ratio 4t.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Asinowski, A., Cohen, E., Golumbic, M.C., Limouzy, V., Lipshteyn, M., Stern, M.: Vertex intersection graphs of paths on a grid. J. Graph Algorithms Appl. 16(2), 129–150 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aumann, Y., Lewenstein, M., Melamud, O., Pinter, R.Y., Yakhini, Z.: Dotted interval graphs and high throughput genotyping. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, pp. 339–348. Society for Industrial and Applied Mathematics, Philadelphia (2005)

    Google Scholar 

  3. Bar-Yehuda, R., Halldórsson, M.M., Naor, J.S., Shachnai, H., Shapira, I.: Scheduling split intervals. SIAM J. Comput. 36, 1–15 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berman, P., Fujito, T.: On approximation properties of the independent set problem for degree 3 graphs. In: Algorithms and Data Structures. Lecture Notes in Computer Science, vol. 955, pp. 449–460. Springer, Berlin (1995)

    Chapter  Google Scholar 

  5. Butman, A., Hermelin, D., Lewenstein, M., Rawitz, D.: Optimization problems in multiple-interval graphs. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, pp. 268–277. Society for Industrial and Applied Mathematics, Philadelphia (2007)

    Google Scholar 

  6. Cabello, S., Cardinal, J., Langerman, S.: The clique problem in ray intersection graphs. In: Algorithms—ESA 2012. Lecture Notes in Computer Science, vol. 7501, pp. 241–252. Springer, Berlin (2012)

    Chapter  Google Scholar 

  7. Chlebík, M., Chlebíkova, J.: The complexity of combinatorial optimization problems on d-dimensional boxes. SIAM J. Discrete Math. 21(1), 158–169 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Crochemore, M., Hermelin, D., Landau, G.M., Vialette, S.: Approximating the 2-interval pattern problem. In: Algorithms—ESA 2005. Lecture Notes in Computer Science, vol. 3669, pp. 426–437. Springer, Berlin (2005)

    Chapter  Google Scholar 

  9. Fellows, M., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci. 410, 53–61 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math. 6, 826–834 (1977)

    Article  MathSciNet  Google Scholar 

  11. Gavril, F.: Algorithms for a maximum clique and a maximum independent set of a circle graph. Networks 3, 261–273 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gavril, F.: Maximum weight independent sets and cliques in intersection graphs of filaments. Inf. Process. Lett. 73(5–6), 181–188 (2000)

    Article  MathSciNet  Google Scholar 

  13. Hochbaum, D.S., Levin, A.: Cyclical scheduling and multi-shift scheduling: complexity and approximation algorithms. Discrete Optim. 3(4), 327–340 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hsu, W.L.: Maximum weight clique algorithms for circular-arc graphs and circle graphs. SIAM J. Comput. 14(1), 224–231 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jiang, M.: On the parameterized complexity of some optimization problems related to multiple-interval graphs. In: Proceedings of CPM 2010. Lecture Notes in Computer Science, vol. 6129, pp. 125–137. Springer, Berlin (2010)

    Google Scholar 

  16. Jiang, M.: Clique in 3-track interval graphs is APX-hard (2012). arXiv:1204.2202 [cs.CC]

  17. Jiang, M., Zhang, Y.: Parameterized complexity in multiple-interval graphs: domination, partition, separation, irredundancy. Theor. Comput. Sci. 461, 27–44 (2012). doi:10.1016/j.tcs.2012.01.025

    Article  MATH  Google Scholar 

  18. Kaiser, T.: Transversals of d-intervals. Discrete Comput. Geom. 18, 195–203 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kammer, F., Tholey, T.: Approximation algorithms for intersection graphs. Algorithmica (2012). doi:10.1007/s00453-012-9671-1

    Google Scholar 

  20. König, F.G.: Sorting with objectives. Ph.D. thesis, Technische Universität Berlin (2009)

  21. Kratochvíl, J., Nešetřil, J.: INDEPENDENT SET and CLIQUE problems in intersection-defined classes of graphs. Comment. Math. Univ. Carol. 31(1), 85–93 (1990)

    MATH  Google Scholar 

  22. Middendorf, M., Pfeiffer, F.: The max clique problem in classes of string-graphs. Discrete Math. 108, 365–372 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. Monien, B., Speckenmeyer, E.: Ramsey numbers and an approximation algorithm for the vertex cover problem. Acta Inform. 22, 115–123 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  24. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  25. Trotter, W.T., Harary, F.: On double and multiple interval graphs. J. Graph Theory 3(3), 205–211 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  26. Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Trans. Comput. 30(2), 135–140 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  27. West, D.B., Shmoys, D.B.: Recognizing graphs with fixed interval number is NP-complete. Discrete Appl. Math. 8(3), 295–305 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  28. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. In: Proceedings of the 38th ACM Symposium on Theory of Computing, STOC ’06, pp. 681–690. ACM, New York (2006)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the grant ANR-09-JCJC-0041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathew C. Francis.

Additional information

An extended abstract of this paper has been accepted for publication in the proceedings of WG 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francis, M.C., Gonçalves, D. & Ochem, P. The Maximum Clique Problem in Multiple Interval Graphs. Algorithmica 71, 812–836 (2015). https://doi.org/10.1007/s00453-013-9828-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-013-9828-6

Keywords

Navigation