Skip to main content
Log in

Synergic association of the consortium Arthrospira maxima with the microalga growth-promoting bacterium Azospirillum cultured under the stressful biogas composition

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The present study evaluates the association of the blue–green microalga Arthrospira maxima (Spirulina), which is known for its CO2 fixation, biomass, and high-value metabolite production, with the microalga growth-promoting bacterium Azospirillum brasilense under the stressful composition of biogas. The results demonstrated that A. maxima co-cultured with A. brasilense under the high CO2 (25%) and methane (CH4; 75%) concentrations of biogas recorded a CO2 fixation rate of 0.24 ± 0.03 g L–1 days–1, thereby attaining a biomass production of 1.8 ± 0.03 g L–1. Similarly, the biochemical composition quality of this microalga enhanced the attainment of higher contents of carbohydrates, proteins, and phycocyanin than cultured alone. However, metabolites other than tryptophan (Trp) and indole-3-acetic acid could have supported this beneficial interaction. Overall, the results demonstrate that this prokaryotic consortium of A. maxima–A. brasilense established a synergic association under biogas, which represents a sustainable strategy to improve the bio-refinery capacity of this microalga and increase the usefulness of A. brasilense in multiple economic sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyses during the current study are available from the corresponding author on reasonable request.

References

  1. Soni RA, Sudhakar K, Rana RS (2017) Spirulina-From growth to nutritional product: a review. Trends Food Sci Technol 69:157–171. https://doi.org/10.1016/j.tifs.2017.09.010

    Article  CAS  Google Scholar 

  2. Costa JAV, Freitas BCB, Rosa GM, Moraes L, Morais MG, Mitchell BG (2019) Operational and economic aspects of Spirulina-based biorefinery. Bioresour Technol 292:121946. https://doi.org/10.1016/j.biortech.2019.121946

    Article  CAS  PubMed  Google Scholar 

  3. Liang MH, Wang L, Wang Q, Zhu J, Jiang JG (2019) High-value bioproducts from microalgae: strategies and progress. Crit Rev Food Sci Nutr 59:2423–2441. https://doi.org/10.1080/10408398.2018.1455030

    Article  CAS  PubMed  Google Scholar 

  4. Hultberg M, Lind O, Birgersson G, Asp H (2017) Use of the effluent from biogas production for cultivation of Spirulina. Bioprocess Biosyst Eng 40:625–631. https://doi.org/10.1007/s00449-016-1726-2

    Article  CAS  PubMed  Google Scholar 

  5. Markou G, Vandamme D, Muylaert K (2014) Microalgal and cyanobacterial cultivation: The supply of nutrients. Water res 65:186–202. https://doi.org/10.1016/j.watres.2014.07.025

    Article  CAS  PubMed  Google Scholar 

  6. Bose A, Lin R, Rajendran K, O’Shea R, Xia A, Murphy JD (2019) How to optimise photosynthetic biogas upgrading: a perspective on system design and microalgae selection. Biotechnol Adv 37:107444. https://doi.org/10.1016/j.biotechadv.2019.107444

    Article  CAS  PubMed  Google Scholar 

  7. Nagarajan D, Lee DJ, Chang JS (2019) Integration of anaerobic digestion and microalgal cultivation for digestate bioremediation and biogas upgrading. Bioresour Technol 290:121804. https://doi.org/10.1016/j.biortech.2019.121804

    Article  CAS  PubMed  Google Scholar 

  8. Sumardiono S, Syaichurrozi I, Budi Sasongko S (2014) Utilization of biogas as carbon dioxide provider for Spirulina platensis culture. Curr Res J Biol Sci 6:53–59

    Article  CAS  Google Scholar 

  9. Yong JJY, Chew KW, Khoo KS, Show PL, Chang JS (2021) Prospects and development of algal-bacterial biotechnology in environmental management and protection. Biotechnol Adv 47:107684. https://doi.org/10.1016/j.biotechadv.2020.107684

    Article  CAS  PubMed  Google Scholar 

  10. Zhang B, Li W, Guo Y, Zhang Z, Shi W, Cui F, Lens PNL, Tay JH (2020) Microalgal-bacterial consortia: from interspecies interactions to biotechnological applications. Renew Sustain Energy Rev 118:109563. https://doi.org/10.1016/j.rser.2019.109563

    Article  Google Scholar 

  11. Rosero-Chasoy G, Rodríguez-Jasso RM, Aguilar CN, Buitrón G, Chairez I, Ruiz HA (2021) Microbial co-culturing strategies for the production high value compounds, a reliable framework towards sustainable biorefinery implementation – an overview. Bioresour Technol 321:124458. https://doi.org/10.1016/j.biortech.2020.124458

    Article  CAS  PubMed  Google Scholar 

  12. Barbosa-Nuñez JA, Palacios OA (2022) Active indole-3-acetic acid biosynthesis by the bacterium Azospirillum brasilense cultured under a biogas atmosphere enables its beneficial association with microalgae. J Appl Microbiol 132:3650–3663. https://doi.org/10.1111/jam.15509

    Article  CAS  PubMed  Google Scholar 

  13. Barbosa-Nuñez JA, Palacios OA, Mondragón-Cortez P, Ocampo-Alvarez H, Becerril-Espinosa A, Nevárez-Moorillón GV, Choix FJ (2023) Chemical and physical affinity of microalga–Azospirillum consortium co-cultured in suspension during CO2 fixation from biogas. BioEnergy Res 16:579–592. https://doi.org/10.1007/s12155-022-10411-7

    Article  CAS  Google Scholar 

  14. Ruiz-Güereca S-S, Sánchez-Saavedra MP (2016) Growth and phosphorus removal by Synechococcus elongatus coimmobilized in alginate beads with Azospirillum brasilense. J Appl Phycol 28:1501–1507. https://doi.org/10.1007/s10811-015-0728-9

    Article  CAS  Google Scholar 

  15. Choix FJ, López-Cisneros CG, Méndez-Acosta HO (2018) Azospirillum brasilense increases CO2 fxation on microalgae Scenedesmus obliquus, Chlorella vulgaris, and Chlamydomonas reinhardtii cultured on high CO2 concentrations. Microb Ecol 76:430–442. https://doi.org/10.1007/s00248-017-1139-z

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Cassán F, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 33:440–459. https://doi.org/10.1007/s00344-013-9362-4

    Article  CAS  Google Scholar 

  17. Bashan Y, de-Bashan LE, (2010) How the plant growth promoting bacterium Azospirillum promotes plant growth-a critical assessment. Adv Agron 108:77–136. https://doi.org/10.1016/S0065-2113(10)08002-8

    Article  CAS  Google Scholar 

  18. Palacios OA, López BR, de-Bashan LE, (2022) Microalga growth-promoting bacteria (MGPB): A formal term proposed for beneficial bacteria involved in microalgal–bacterial interactions. Algal Res 61:102585. https://doi.org/10.1016/j.algal.2021.102585

    Article  Google Scholar 

  19. Palacios OA, Gomez-Anduro G, Bashan Y, de-Bashan LE, (2016) Tryptophan, thiamine and indole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense. FEMS Microbiol Ecol 92:1–11. https://doi.org/10.1093/femsec/fw077

    Article  Google Scholar 

  20. de-Bashan LE, Mayali X, Bebout BM, Weber PK, Detweiler AM, Hernandez JP, Prufert-Bebout L, Bashan Y, (2016) Establishment of stable synthetic mutualism without co-evolution between microalgae and bacteria demonstrated by mutual transfer of metabolites (NanoSIMS isotopic imaging) and persistent physical association (Fluorescent in situ hybridization). Algal Res 15:179–186. https://doi.org/10.1016/j.algal.2016.02.019

    Article  Google Scholar 

  21. Bashan Y, Trejo A, de-Bashan LE, (2011) Development of two culture media for mass cultivation of Azospirillum spp. and for production of inoculants to enhance plant growth. Biol Fertil Soils 47:963–969. https://doi.org/10.1007/s00374-011-0555-3

    Article  CAS  Google Scholar 

  22. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  23. Abinandan S, Shanthakumar S (2016) Evaluation of photosynthetic efficacy and CO2 removal of microalgae grown in an enriched bicarbonate medium. Biotech 6:1–9. https://doi.org/10.1007/s13205-015-0314-5

    Article  Google Scholar 

  24. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  25. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  26. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem 37:911–917

    CAS  PubMed  Google Scholar 

  27. Guldhe A, Ansari FA, Singh P, Bux F (2017) Heterotrophic cultivation of microalgae using aquaculture wastewater: a biorefinery concept for biomass production and nutrient remediation. Ecol Eng 99:47–53. https://doi.org/10.1016/j.ecoleng.2016.11.013

    Article  Google Scholar 

  28. Vega BOA, Lovina DV (2017) Métodos y herramientas analíticas en la evaluación de la biomasa microalga. CIBNOR, México

  29. Pistorius AMA, DeGrip WJ, Egorova-Zachernyuk TA (2009) Monitoring of biomass composition from microbiological sources by means of FT-IR spectroscopy. Biotechnol Bioeng 103:123–129. https://doi.org/10.1002/bit.22220

    Article  CAS  PubMed  Google Scholar 

  30. Stuart BH (2004) Infrared spectroscopy: fundamentals and applications. Wiley, Canada

    Book  Google Scholar 

  31. Ramos-Ibarra JR, Snell-Castro R, Neria-Casillas JA, Choix FJ (2019) Biotechnological potential of Chlorella sp. and Scenedesmus sp. microalgae to endure high CO2 and methane concentrations from biogas. Bioprocess Biosyst Eng 42:1603–1610. https://doi.org/10.1007/s00449-019-02157-y

    Article  CAS  PubMed  Google Scholar 

  32. Solovchenko A, Khozin-Goldberg I (2013) High-CO2 tolerance in microalgae: possible mechanisms and implications for biotechnology and bioremediation. Biotechnol Lett 35:1745–1752. https://doi.org/10.1007/s10529-013-1274-7

    Article  CAS  PubMed  Google Scholar 

  33. Bose A, O’Shea R, Lin R, Murphy JD (2021) Design, commissioning, and performance assessment of a lab-scale bubble column reactor for photosynthetic biogas upgrading with Spirulina platensis. Ind Eng Chem Res 60:5688–5704. https://doi.org/10.1021/acs.iecr.0c05974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stirk WA, Van Staden J (2020) Potential of phytohormones as a strategy to improve microalgae productivity for biotechnological applications. Biotechnol Adv 44:107612. https://doi.org/10.1016/j.biotechadv.2020.107612

    Article  CAS  PubMed  Google Scholar 

  35. Han X, Zeng H, Bartocci P, Fantozzi F, Yan Y (2018) Phytohormones and effects on growth and metabolites of microalgae: a review. Fermentation 4:25. https://doi.org/10.3390/fermentation4020025

    Article  CAS  Google Scholar 

  36. Shah S, Li X, Jiang Z, Fahad S, Hassan S (2022) Exploration of the phytohormone regulation of energy storage compound accumulation in microalgae. Food Energy Secur 11:e418. https://doi.org/10.1002/fes3.418

    Article  CAS  Google Scholar 

  37. Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42:117–126. https://doi.org/10.1134/S0003683806020013

    Article  CAS  Google Scholar 

  38. Chen H, Jiang Y, Zhu K, Yang J, Fu Y, Wang S (2023) A review on industrial CO2 capture through microalgae regulated by phytohormones and cultivation processes. Energies 16:897. https://doi.org/10.3390/en16020897

    Article  CAS  Google Scholar 

  39. Zyszka-Haberecht B, Niemczyk E, Lipok J (2019) Metabolic relation of cyanobacteria to aromatic compounds. Appl Microbiol Biotechnol 103:1167–1178. https://doi.org/10.1007/s00253-018-9568-2

    Article  CAS  PubMed  Google Scholar 

  40. Variem SS, Kizhakkedath VK (2021) Phycosphere associated bacteria; a prospective source of bioactive compounds. Biologia 76:1095–1098. https://doi.org/10.2478/s11756-020-00640-6

    Article  CAS  Google Scholar 

  41. Hays SG, Yan LL, Silver PA, Ducat DC (2017) Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction. J Biol Eng 11:1–14. https://doi.org/10.1186/s13036-017-0048-5

    Article  CAS  Google Scholar 

  42. Okon Y, Itzigsohn R (1992) Poly-β-hydroxybutyrate metabolism in Azospirillum brasilense and the ecological role of PHB in the rhizosphere. FEMS Microbiol Rev 9:131–139. https://doi.org/10.1111/j.1574-6968.1992.tb05830.x

    Article  Google Scholar 

  43. González-González LM, de-Bashan LE, (2021) Toward the enhancement of microalgal metabolite production through microalgae– bacteria consortia. Biology 10:282. https://doi.org/10.3390/biology10040282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Choix FJ, Bashan Y, Mendoza A, de-Bashan LE, (2014) Enhanced activity of ADP glucose pyrophosphorylase and formation of starch induced by Azospirillum brasilense in Chlorella vulgaris. J Biotechnol 177:22–34. https://doi.org/10.1016/j.jbiotec.2014.02.014

    Article  CAS  PubMed  Google Scholar 

  45. Li Y, Han D, Sommerfeld M, Hu Q (2011) Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresour Technol 102:123–129. https://doi.org/10.1016/j.biortech.2010.06.036

    Article  CAS  PubMed  Google Scholar 

  46. Li T, Yang F, Xu J, Wu H, Mo J, Dai L, Xiang W (2020) Evaluating diferences in growth, photosynthetic efciency, and transcriptome of Asterarcys sp. SCS-1881 under autotrophic, mixotrophic, and heterotrophic culturing conditions. Algal Res 45:101753. https://doi.org/10.1016/j.algal.2019.101753

    Article  Google Scholar 

Download references

Acknowledgements

Francisco J. Choix acknowledges Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCYT, Mexico) for the support under the Program-Project 90 Cátedras CONAHCYT; Diana Fischer for English edition.

Funding

This study was funded by CONAHCyT- Frontiers of Science 2019 Project 15769.

Author information

Authors and Affiliations

Authors

Contributions

Martha Lara: investigation, formal analysis. Eduardo Juárez: investigation, development or design of methodology. Pedro Mondragón: investigation, visualization, formal analysis. Héctor Ocampo and Amayaly Becerril: visualization, data curation, formal analysis. Oskar A. Palacios: data curation, writing—review and editing. Francisco Choix: writing—original draft, funding acquisition, project administration, conceptualization.

Corresponding author

Correspondence to Francisco J. Choix.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 204 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choix, F.J., Palacios, O.A., Mondragón-Cortez, P. et al. Synergic association of the consortium Arthrospira maxima with the microalga growth-promoting bacterium Azospirillum cultured under the stressful biogas composition. Bioprocess Biosyst Eng 47, 181–193 (2024). https://doi.org/10.1007/s00449-023-02947-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02947-5

Keywords

Navigation