Skip to main content
Log in

Enhanced nitrogen removal from low-temperature wastewater by an iterative screening of cold-tolerant denitrifying bacteria

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The biological process to remove nitrogen in winter effluent is often seriously compromised due to the effect of low temperatures (< 13 °C) on the metabolic activity of microorganisms. In this study, a novel heterotrophic nitrifying-aerobic denitrifying bacterium with cold tolerance was isolated by iterative domestication and named Moraxella sp. LT-01. The LT-01 maintained almost 60% of its maximal growth activity at 10 °C. Under initial concentrations of 100 mg/L, the removal efficiencies of ammonium, nitrate, nitrite by LT-01 were 70.3%, 65.4%, 61.7% respectively for 72 h incubation at 10 °C. Nitrogen balance analysis showed that about 46% of TN was released as gases and 16% of TN was assimilated for cell growth. The biomarker genes involved in nitrification and denitrification pathways were identified by gene-specific PCR and revealed that the LT-01 has nitrite reductase (NirS) but not hydroxylamine reductase (HAO), which implies the involvement of other genes in the process. The study indicates that LT-01 has the potential for use in low-temperature regions for efficient sewage treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

source: sodium citrate (SC), sodium acetate (SA), sucrose (Suc), glucose (Glu) and sodium succinate (SS); d Substrate concentration: 20, 50, 100, 200, 500 mg/L; e DO: 5, 6, 7, 8, 9 mg/L

Fig. 5

Similar content being viewed by others

References

  1. Keeley RF, Rodriguez-Gonzalez L, GenomicsClass USF, Briggs GE, Briggs GE, Frazier VE, Mancera PA, Manzer HS, Ergas SJ, Scott KM (2020) Degenerate PCR primers for assays to track steps of nitrogen metabolism by taxonomically diverse microorganisms in a variety of environments. J Microbiol Methods 175:105990. https://doi.org/10.1016/j.mimet.2020.105990

    Article  CAS  PubMed  Google Scholar 

  2. Chen TK, Ni CH, Chen JN, Lin J (2003) High-strength nitrogen removal of opto-electronic industrial wastewater in membrane bioreactor—a pilot study. Water Sci Technol 48:191–198. https://doi.org/10.2166/wst.2003.0052

    Article  CAS  PubMed  Google Scholar 

  3. Rajta A, Bhatia R, Setia H, Pathania P (2019) Role of heterotrophic aerobic denitrifying bacteria in nitrate removal from wastewater. J Appl Microbiol 128:1261–1278. https://doi.org/10.1111/jam.14476

    Article  CAS  PubMed  Google Scholar 

  4. Zhang J, Wu P, Hao B, Yu Z (2011) Heterotrophic nitrification and aerobic denitrification by the bacterium Pseudomonas stutzeri YZN-001. Bioresour Technol 102:9866–9869. https://doi.org/10.1016/j.biortech.2011.07.118

    Article  CAS  PubMed  Google Scholar 

  5. Chen Q, Ni J (2011) Heterotrophic nitrification–aerobic denitrification by novel isolated bacteria. J Ind Microbiol Biotechnol 38:1305–1310. https://doi.org/10.1007/s10295-010-0911-6

    Article  CAS  PubMed  Google Scholar 

  6. Kuenen JG, Robertson LA (1994) Combined nitrification-denitrification processes. FEMS Microbiol Rev 15:109–117. https://doi.org/10.1111/j.1574-6976.1994.tb00129.x

    Article  CAS  Google Scholar 

  7. Richardson D, Wehrfritz J, Keech A, Crossman L, Roldan M, Sears H, Butler C, Reilly A, Moir J, Berks B, Ferguson S, Thomson A, Spiro S (1998) The diversity of redox proteins involved in bacterial heterotrophic nitrification and aerobic denitrification. Biochem Soc Trans 26:401–408. https://doi.org/10.1042/bst0260401

    Article  CAS  PubMed  Google Scholar 

  8. Otte S, Schalk J, Kuenen JG, Jetten MS (1999) Hydroxylamine oxidation and subsequent nitrous oxide production by the heterotrophic ammonia oxidizer Alcaligenes faecalis. Appl Microbiol Biotechnol 51:255–261. https://doi.org/10.1007/s002530051390

    Article  CAS  PubMed  Google Scholar 

  9. Zhao B, An Q, He YL, Guo JS (2012) N2O and N2 production during heterotrophic nitrification by Alcaligenes faecalis strain NR. Bioresour Technol 116:379–385. https://doi.org/10.1016/j.biortech.2012.03.113

  10. Chen Y, Yao R, Zheng Z, Du Q (2019) New insight into the nitrogen metabolism of simultaneous heterotrophic nitrification-aerobic denitrification bacterium in mRNA expression. J Hazard Mater 371:295–303. https://doi.org/10.1016/j.jhazmat.2019.03.023

    Article  CAS  PubMed  Google Scholar 

  11. Yang L, Ren YX, Liang X, Zhao SQ, Wang JP, Xia ZH (2015) Nitrogen removal characteristics of a heterotrophic nitrifier Acinetobacter junii YB and its potential application for the treatment of high-strength nitrogenous wastewater. Bioresour Technol 193:227–233. https://doi.org/10.1016/j.biortech.2015.05.075

    Article  CAS  PubMed  Google Scholar 

  12. Xu Y, Tengxia H, Zhenlun L, Qing Y, Yanli C, Enyu X, Xue Z (2017) Nitrogen removal characteristics of Pseudomonas putida Y-9 capable of heterotrophic nitrification and aerobic denitrification at low temperature. Biomed Res Int 2017:1429018. https://doi.org/10.1155/2017/1429018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Joo H-S, Hirai M, Shoda M (2005) Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis No. 4. J Biosci Bioeng 100:184–191. https://doi.org/10.1263/jbb.100.184

    Article  CAS  PubMed  Google Scholar 

  14. Robertson LA, Kuenen JG (1983) Thiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium. Microbiol SGM 129:2847–2855. https://doi.org/10.1099/00221287-129-9-2847

    Article  CAS  Google Scholar 

  15. Carneiro Fidélis Silva L, Santiago Lima H, de Oliveira A, Mendes T, Sartoratto A, de Paula SM, Suhett de Souza R, Oliveira de Paula S, Maia de Oliveira V, Canêdo da Silva C (2019) Heterotrophic nitrifying/aerobic denitrifying bacteria: ammonium removal under different physical-chemical conditions and molecular characterization. J Environ Manag 248:109294. https://doi.org/10.1016/j.jenvman.2019.109294

    Article  CAS  Google Scholar 

  16. Rout PR, Bhunia P, Dash RR (2017) Simultaneous removal of nitrogen and phosphorous from domestic wastewater using Bacillus cereus GS-5 strain exhibiting heterotrophic nitrification, aerobic denitrification and denitrifying phosphorous removal. Bioresour Technol 244:484–495. https://doi.org/10.1016/j.biortech.2017.07.186

    Article  CAS  PubMed  Google Scholar 

  17. Angar Y, Kebbouche-Gana S, Djelali N-E, Khemili-Talbi S (2016) Novel approach for the ammonium removal by simultaneous heterotrophic nitrification and denitrification using a novel bacterial species co-culture. World J Microb Biotechnol 32:36. https://doi.org/10.1007/s11274-015-2007-y

    Article  CAS  Google Scholar 

  18. Wei R, Hui C, Zhang Y, Jiang H, Zhao Y, Du L (2021) Nitrogen removal characteristics and predicted conversion pathways of a heterotrophic nitrification–aerobic denitrification bacterium, Pseudomonas aeruginosa P-1. Environ Sci Pollut R 28:7503–7514. https://link.springer.com/article/. Doi: https://doi.org/10.1007/s11356-020-11066-7

  19. Chen H, Zhou W, Zhu S, Liu F, Qin L, Xu C, Wang Z (2021) Biological nitrogen and phosphorus removal by a phosphorus-accumulating bacteria Acinetobacter sp. strain C-13 with the ability of heterotrophic nitrification–aerobic denitrification. Bioresour Technol 322:124507. https://doi.org/10.1016/j.biortech.2020.124507

    Article  CAS  PubMed  Google Scholar 

  20. Marazioti C, Kornaros M, Lyberatos G (2003) Kinetic modeling of a mixed culture of Pseudomonas Denitrificans and Bacillus subtilis under aerobic and anoxic operating conditions. Water Res 37:1239–1251. https://doi.org/10.1016/S0043-1354(02)00463-3

    Article  CAS  PubMed  Google Scholar 

  21. Lei Y, Wang Y, Liu H, Xi C, Song L (2016) A novel heterotrophic nitrifying and aerobic denitrifying bacterium, Zobellella taiwanensis DN-7, can remove high-strength ammonium. Appl Microbiol Biotechnol 100:4219–4229. https://doi.org/10.1007/s00253-016-7290-5

    Article  CAS  PubMed  Google Scholar 

  22. Laureni M, FalaS P, Robin O, Wick A, Weissbrodt DG, Nielsen JL, Ternes TA, Morgenroth E, Joss A (2016) Mainstream partial nitritation and anammox: long-term process stability and effluent quality at low temperatures. Water Res 101:628–639. https://doi.org/10.1016/j.watres.2016.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ayala-del-Río HL, Chain PS, Grzymski JJ, Ponder MA, Ivanova N, Bergholz PW, Di Bartolo G, Hauser L, Land M, Bakermans C, Rodrigues D, Klappenbach J, Zarka D, Larimer F, Richardson P, Murray A, Thomashow M, Tiedje JM (2010) The genome sequence of Psychrobacter arcticus 273–4, a psychroactive siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature Growth. Appl Environ Microb 76:2304–2312. https://doi.org/10.1128/aem.02101-09

    Article  Google Scholar 

  24. Ma Y, Wang Q, Xu W, Liu X, Gao X, Zhang Y (2017) Stationary phase-dependent accumulation of ectoine is an efficient adaptation strategy in Vibrio anguillarum against cold stress. Microbiol Res 205:8–18. https://doi.org/10.1016/j.micres.2017.08.005

    Article  CAS  PubMed  Google Scholar 

  25. Salama Y, Chennaoui M, Sylla A, Mountadar M, Rihani M, Assobhei O (2016) Characterization, structure, and function of extracellular polymeric substances (EPS) of microbial biofilm in biological wastewater treatment systems: a review. Desalin Water Treat 57:16220–16237. https://doi.org/10.1080/19443994.2015.1077739

    Article  CAS  Google Scholar 

  26. Williams TJ, Liao Y, Ye J, Kuchel RP, Poljak A, Raftery MJ, Cavicchioli R (2017) Cold adaptation of the Antarctic haloarchaea Halohasta litchfieldiae and Halorubrum lacusprofundi. Environ Microbiol 19:2210–2227. https://doi.org/10.1111/1462-2920.13705

    Article  CAS  PubMed  Google Scholar 

  27. Gratia E, Weekers F, Margesin R, D’Amico S, Thonart P, Feller G (2009) Selection of a cold-adapted bacterium for bioremediation of wastewater at low temperatures. Extremophiles 13:763–768. https://doi.org/10.1007/s00792-009-0264-0

    Article  CAS  PubMed  Google Scholar 

  28. Margesin R, Fonteyne PA, Redl B (2005) Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts. Res Microbiol 156:68–75. https://doi.org/10.1016/j.resmic.2004.08.002

    Article  CAS  PubMed  Google Scholar 

  29. Margesin R, Moertelmaier C, Mair J (2013) Low-temperature biodegradation of petroleum hydrocarbons (n-alkanes, phenol, anthracene, pyrene) by four actinobacterial strains. Int Biodeterior Biodegrad 84:185–191. https://doi.org/10.1016/j.ibiod.2012.05.004

    Article  CAS  Google Scholar 

  30. Laureni M, Weissbrodt DG, Szivak I, Robin O, Nielsen JL, Morgenroth E, Joss A (2015) Activity and growth of anammox biomass on aerobically pre-treated municipal wastewater. Water Res 80:325–336. https://doi.org/10.1016/j.watres.2015.04.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lotti T, Kleerebezem R, van Erp Taalman Kip C, Hendrickx TLG, Kruit J, Hoekstra M, van Loosdrecht MCM (2014) Anammox growth on pretreated municipal wastewater. Environ Sci Technol 48:7874–7880. https://doi.org/10.1021/es500632k

    Article  CAS  PubMed  Google Scholar 

  32. Ma B, Peng Y, Zhang S, Wang J, Gan Y, Chang J, Wang S, Wang S, Zhu G (2013) Performance of anammox UASB reactor treating low strength wastewater under moderate and low temperatures. Bioresour Technol 129:606–611. http://dx.chinadoi.cn/. Doi: https://doi.org/10.1016/j.biortech.2012.11.025

  33. Mcdaniel LE, Bailey EG (1969) Effect of shaking speed and type of closure on shake flask cultures. Appl Microbiol 17:286–290. https://doi.org/10.1128/am.17.2.286-290.1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wittmann C, Min Kim H, John G, Heinzle E (2003) Characterization and application of an optical sensor for quantification of dissolved O2 in shake-flasks. Biotechnol Lett 25:377–380. https://doi.org/10.1023/a:1022402212537

    Article  CAS  PubMed  Google Scholar 

  35. Quartaroli L, Silva LCF, Silva CM, Lima HS, de Paula SO, de Oliveira VM, de Cássia S, da Silva M, Kasuya MCM, de Sousa MP, Torres APR, Souza RS, Bassin JP, da Silva CC (2017) Ammonium removal from high-salinity oilfield-produced water: assessing the microbial community dynamics at increasing salt concentrations. Appl Microbiol Biotechnol 101:859–870. https://doi.org/10.1007/s00253-016-7902-0

    Article  CAS  PubMed  Google Scholar 

  36. APHA (2012) Standard methods for the examination of water and wastewater, nineteenth. American Public Health Association, Washington

    Google Scholar 

  37. Frear DS, Burrell RC (1955) Spectrophotometric method for determining hydroxylamine reductase activity in higher plants. Anal Chem 27:1664–1665. https://doi.org/10.1021/ac60106a054

    Article  CAS  Google Scholar 

  38. AOAC (2005) Association of official analytical chemists (AOAC). Van Nostrand’s Encyclopedia of Chemistry

  39. Zheng H, Liu Y, Sun G, Gao X, Zhang Q, Liu Z (2011) Denitrification characteristics of a marine origin psychrophilic aerobic denitrifying bacterium. J Environ Sci 23:1888–1893. https://doi.org/10.1016/S1001-0742(10)60615-8

    Article  CAS  Google Scholar 

  40. He T, Ye Q, Sun Q, Cai X, Ni J, Li Z, Xie D (2018) Removal of nitrate in simulated water at low temperature by a novel psychrotrophic and aerobic bacterium, Pseudomonas taiwanensis Strain. J BioMed Res Int 2018:4984087. https://doi.org/10.1155/2018/4984087

    Article  CAS  Google Scholar 

  41. He T, Xie D, Li Z, Ni J, Sun Q (2017) Ammonium stimulates nitrate reduction during simultaneous nitrification and denitrification process by Arthrobacter arilaitensis Y-10. Bioresour Technol 239:66–73. https://doi.org/10.1016/j.biortech.2017.04.125

    Article  CAS  PubMed  Google Scholar 

  42. Zhang D, Li W, Huang X, Qin W, Liu M (2013) Removal of ammonium in surface water at low temperature by a newly isolated Microbacterium sp. strain SFA13. Bioresour Technol 137:147–152. https://doi.org/10.1016/j.biortech.2013.03.094

    Article  CAS  PubMed  Google Scholar 

  43. Huang X, Li W, Zhang D, Qin W (2013) Ammonium removal by a novel oligotrophic Acinetobacter sp. Y16 capable of heterotrophic nitrification–aerobic denitrification at low temperature. Bioresour Technol 146:44–50. https://doi.org/10.1016/j.biortech.2013.07.046

    Article  CAS  PubMed  Google Scholar 

  44. Pal RR, Khardenavis AA, Purohit HJ (2015) Identification and monitoring of nitrification and denitrification genes in Klebsiella pneumoniae EGD-HP19-C for its ability to perform heterotrophic nitrification and aerobic denitrification. Funct Integr Genomic 15:63–76. https://doi.org/10.1007/s10142-014-0406-z

    Article  CAS  Google Scholar 

  45. Padhi SK, Tripathy S, Sen R, Mahapatra AS, Mohanty S, Maiti NK (2013) Characterisation of heterotrophic nitrifying and aerobic denitrifying Klebsiella pneumoniae CF-S9 strain for bioremediation of wastewater. Int Biodeterior Biodegrad 78:67–73. https://doi.org/10.1016/j.ibiod.2013.01.001

    Article  CAS  Google Scholar 

  46. Shapovalova AA, Khijniak TV, Tourova TP, Muyzer G, Sorokin DY (2008) Heterotrophic denitrification at extremely high salt and pH by haloalkaliphilic Gammaproteobacteria from hypersaline soda lakes. Extremophiles 12:619–625. https://doi.org/10.1007/s00792-008-0166-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Duan J, Fang H, Su B, Chen J, Lin J (2015) Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application on treatment of saline wastewater. Bioresour Technol 179:421–428. https://doi.org/10.1016/j.biortech.2014.12.057

    Article  CAS  PubMed  Google Scholar 

  48. Huang F, Pan L, Lv N, Tang X (2017) Characterization of novel Bacillus strain N31 from mariculture water capable of halophilic heterotrophic nitrification–aerobic denitrification. J Biosci Bioeng 124:564–571. https://doi.org/10.1016/j.jbiosc.2017.06.008

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Y, Shi Z, Chen M, Dong X, Zhou J (2015) Evaluation of simultaneous nitrification and denitrification under controlled conditions by an aerobic denitrifier culture. Bioresour Technol 175:602–605. https://doi.org/10.1016/j.biortech.2014.10.016

    Article  CAS  PubMed  Google Scholar 

  50. Liu Y, Ai GM, Miao LL, Liu ZP (2016) Marinobacter strain NNA5, a newly isolated and highly efficient aerobic denitrifier with zero N2O emission. Bioresour Technol 206:9–15. https://doi.org/10.1016/j.biortech.2016.01.066

    Article  CAS  PubMed  Google Scholar 

  51. Anesio AM, Hodson AJ, Fritz A, Psenner R, Sattler B (2009) High microbial activity on glaciers: importance to the global carbon cycle. Glob Change Biol 15:955–960. https://doi.org/10.1111/j.1365-2486.2008.01758.x

    Article  Google Scholar 

  52. Sun Z, Lv Y, Liu Y, Ren R (2016) Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a novel metal resistant bacterium Cupriavidus sp. S1. Bioresour Technol 220:142–150. https://doi.org/10.1016/j.biortech.2016.07.110

    Article  CAS  PubMed  Google Scholar 

  53. Pedersen H, Dunkin K, Firestone M (1999) The relative importance of autotrophic and heterotrophic nitrification in a conifer forest soil as measured by 15N tracer and pool dilution techniques. Biogeochemistry 44:135–150. https://doi.org/10.1007/bf00992975

    Article  Google Scholar 

  54. Jin P, Chen Y, Xu T, Cui Z, Zheng Z (2019) Efficient nitrogen removal by simultaneous heterotrophic nitrifying-aerobic denitrifying bacterium in a purification tank bioreactor amended with two-stage dissolved oxygen control. Bioresour Technol 281:392–400. https://doi.org/10.1016/j.biortech.2019.02.119

    Article  CAS  PubMed  Google Scholar 

  55. Li C, Yang J, Wang X, Wang E, Li B, He R, Yuan H (2015) Removal of nitrogen by heterotrophic nitrification–aerobic denitrification of a phosphate accumulating bacterium Pseudomonas stutzeri YG-24. Bioresour Technol 182:18–25. https://doi.org/10.1016/j.biortech.2015.01.100

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key R&D Program Project of Zhejiang Province, China (Grant 2020C02009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanwang Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, J., Zhao, R., Chen, Y. et al. Enhanced nitrogen removal from low-temperature wastewater by an iterative screening of cold-tolerant denitrifying bacteria. Bioprocess Biosyst Eng 45, 381–390 (2022). https://doi.org/10.1007/s00449-021-02668-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02668-7

Keywords

Navigation