Skip to main content
Log in

Tragacanth-mediate synthesis of NiO nanosheets for cytotoxicity and photocatalytic degradation of organic dyes

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, NiO nanosheets have been manufactured using a co-precipitation approach that involved the usage of nickel nitrate (Ni (NO3)2.6H2O) as the raw material and tragacanth in the role of a stabilizing agent. NiO nanosheets have been fabricated through the reduction of nickel nitrate solution that had been obtained by the application of aqueous extract of tragacanth, which is capable of functioning as a reducing and stabilizing agent. In the following, the physical and chemical properties of tragacanth-stabilized NiO nanosheets have been identified via FESEM, EDS, XRD, UV–Vis, and FT-IR techniques. According to the XRD pattern, these particular nanosheets have contained a cubic structure and group space Fm3m, along with the average size of about 18 to 43 nm that had been in agreement with the FESEM measurements. In addition, we have evaluated the photocatalytic activity of tragacanth-stabilized NiO nanosheets on the degradations of methylene blue (MB) and methyl orange (MO) dyes. The performed photocatalytic assessment has displayed that the nanosheets can degrade 82% of MO within 210 min and 60% of MB in 300 min. The cytotoxicity of tragacanth-stabilized NiO nanosheets on human Glioblastoma cancer (U87MG) cell lines has been investigated via the MTT assay, while it has been detected in the obtained results that the inhibitory concentration (IC50) had been 125 µg/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sheikhshoaie M, Sheikhshoaie I, Karimi-Maleh H, Ranjbar M (2017) Synthesis and characterization of NiO nanoparticles by thermolysis of a Ni (II) Hydrazonic Schiff base complex. In: The first conference on the developement of science and chemical industry, 1–2 Feb 2017

  2. Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48:1–29

    Article  CAS  Google Scholar 

  3. Kalpana V, Devi Rajeswari V (2018) A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorg Chem Appl 2018:3569758. https://doi.org/10.1155/2018/3569758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang J, Liang J, Wu J, Xuan C, Wu Z, Guo X, Lai C, Zhu Y, Wang D (2018) Coordination effect of network NiO nanosheet and a carbon layer on the cathode side in constructing a high-performance lithium-sulfur battery. J Mater Chem A 6:6503–6509

    Article  CAS  Google Scholar 

  5. Khan MM, Adil SF, Al-Mayouf A (2015) Metal oxides as photocatalysts. J Saudi Chem Soc 19:462–464

    Article  Google Scholar 

  6. Shin JW, Choi SH, Kim DE, Kim HS, Lee J-H, Lee IS, Lee EY (2011) Heterologous expression of an alginate lyase from Streptomyces sp. ALG-5 in Escherichia coli and its use for the preparation of the magnetic nanoparticle-immobilized enzymes. Bioprocess Biosyst Eng 34:113–119

    Article  CAS  PubMed  Google Scholar 

  7. Yang J, Hou B, Wang J, Tian B, Bi J, Wang N, Li X, Huang X (2019) Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials 9:424

    Article  CAS  PubMed Central  Google Scholar 

  8. Zalapa-Garibay MA, Torres-Torres D, Arizmendi-Morquecho AM, Reyes-López SY (2019) Effect of NiO and MoO3 addition on the crystallinity and mechanical properties of α-cordierite and β-cordierite in the MgO–Al2O3–SiO2 system. Results Phys 13:102227

    Article  Google Scholar 

  9. Alimoradzadeh R, Assadi A, Nasseri S, Mehrasbi MR (2012) Photocatalytic degradation of 4-chlorophenol by UV/H 2 O 2/NiO process in aqueous solution. Iran J Environ Health Sci Eng 9:12

    Article  CAS  Google Scholar 

  10. Khan MM, Ansari SA, Pradhan D, Ansari MO, Han DH, Lee J, Cho MH (2014) Band gap engineered TiO2 nanoparticles for visible light-induced photoelectrochemical and photocatalytic studies. J Mater Chem A 2:637–644

    Article  CAS  Google Scholar 

  11. Sun B, Zhou G, Gao T, Zhang H, Yu H (2016) NiO nanosheet/TiO2 nanorod-constructed p–n heterostructures for improved photocatalytic activity. Appl Surf Sci 364:322–331

    Article  CAS  Google Scholar 

  12. Diallo A, Kaviyarasu K, Ndiaye S, Mothudi B, Ishaq A, Rajendran V, Maaza M (2018) Structural, optical and photocatalytic applications of biosynthesized NiO nanocrystals. Green Chem Lett Rev 11:166–175

    Article  CAS  Google Scholar 

  13. Nourbakhsh F, Mohsennia M, Pazouki M (2017) Nickel oxide/carbon nanotube/polyaniline nanocomposite as bifunctional anode catalyst for high-performance Shewanella-based dual-chamber microbial fuel cell. Bioprocess Biosyst Eng 40:1669–1677

    Article  CAS  PubMed  Google Scholar 

  14. Rasalingam S, Peng R, Koodali RT (2014) Removal of hazardous pollutants from wastewaters: applications of TiO2-SiO2 mixed oxide materials. J Nanomater 2014:10

    Article  CAS  Google Scholar 

  15. Johar MA, Afzal RA, Alazba AA, Manzoor U (2015) Photocatalysis and bandgap engineering using ZnO nanocomposites. Adv Mater Sci Eng 2015:934587. https://doi.org/10.1155/2015/934587

    Article  CAS  Google Scholar 

  16. Dong Q, Yin S, Guo C, Wu X, Kumada N, Takei T, Miura A, Yonesaki Y, Sato T (2014) Single-crystalline porous NiO nanosheets prepared from β-Ni (OH) 2 nanosheets: magnetic property and photocatalytic activity. Appl Catal B 147:741–747

    Article  CAS  Google Scholar 

  17. Darroudi M, Sabouri Z, Kazemi Oskuee R, Khorsand Zak A, Kargar H, Hamid MHNA (2013) Sol–gel synthesis, characterization, and neurotoxicity effect of zinc oxide nanoparticles using gum tragacanth. Ceram Int 39:9195–9199

    Article  CAS  Google Scholar 

  18. Balaghi S, Mohammadifar MA, Zargaraan A, Gavlighi HA, Mohammadi M (2011) Compositional analysis and rheological characterization of gum tragacanth exudates from six species of Iranian Astragalus. Food Hydrocoll 25:1775–1784

    Article  CAS  Google Scholar 

  19. Zare EN, Makvandi P, Borzacchiello A, Tay FR, Padil VVT (2019) Antimicrobial gum bio-based nanocomposites and their industrial and biomedical applications. Chem Commun 55:14871–14885

    Article  Google Scholar 

  20. Darroudi M, Sabouri Z, Kazemi Oskuee R, Kargar H, Hosseini HA (2014) Neuronal toxicity of biopolymer-template synthesized ZnO nanoparticles. Nanomed J 1:88–93

    Google Scholar 

  21. Thiruvengadam M, Chung I-M, Gomathi T, Ansari MA, Khanna VG, Babu V, Rajakumar G (2019) Synthesis, characterization and pharmacological potential of green synthesized copper nanoparticles. Bioprocess Biosyst Eng 42:1769–1777

    Article  CAS  PubMed  Google Scholar 

  22. Syafiuddin A, Hadibarata T, Salim MR, Kueh ABH, Sari AA (2017) A purely green synthesis of silver nanoparticles using Carica papaya, Manihot esculenta, and Morinda citrifolia: synthesis and antibacterial evaluations. Bioprocess Biosyst Eng 40:1349–1361

    Article  CAS  PubMed  Google Scholar 

  23. Khan ME, Khan MM, Min B-K, Cho MH (2018) Microbial fuel cell assisted band gap narrowed TiO 2 for visible light-induced photocatalytic activities and power generation. Sci Rep 8:1723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Baghayeri M, Mahdavi B, Hosseinpor-Mohsen Abadi Z, Farhadi S (2018) Green synthesis of silver nanoparticles using water extract of Salvia leriifolia: antibacterial studies and applications as catalysts in the electrochemical detection of nitrite. Appl Organomet Chem 32:e4057

    Article  CAS  Google Scholar 

  25. Akbari A, Khammar M, Taherzadeh D, Rajabian A, Zak AK, Darroudi M (2017) Zinc-doped cerium oxide nanoparticles: Sol–gel synthesis, characterization, and investigation of their in vitro cytotoxicity effects. J Mol Struct 1149:771–776

    Article  CAS  Google Scholar 

  26. Zhu Y, Cao C, Tao S, Chu W, Wu Z, Li Y (2014) Ultrathin nickel hydroxide and oxide nanosheets: synthesis, characterizations, and excellent supercapacitor performances. Sci Rep 4:5787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu Z, Jiang L, Zhu Y, Xu C, Ye Y, Wang X (2012) Synthesis of mesoporous NiO nanosheet and its application on mercury (II) sensor. J Solid State Electrochem 16:3171–3177

    Article  CAS  Google Scholar 

  28. She S, Bian S, Huo R, Chen K, Huang Z, Zhang J, Hao J, Wei Y (2016) Degradable organically-derivatized polyoxometalate with enhanced activity against glioblastoma cell line. Sci Rep 6:33529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gao H, Yang Z, Cao S, Xiong Y, Zhang S, Pang Z, Jiang X (2014) Tumor cells and neovasculature dual targeting delivery for glioblastoma treatment. Biomaterials 35:2374–2382

    Article  CAS  PubMed  Google Scholar 

  30. Senobari S, Nezamzadeh-Ejhieh A (2018) A p-n junction NiO-CdS nanoparticles with enhanced photocatalytic activity: a response surface methodology study. J Mol Liq 257:173–183

    Article  CAS  Google Scholar 

  31. Ramesh M, Rao MPC, Anandan S, Nagaraja H (2018) Adsorption and photocatalytic properties of NiO nanoparticles synthesized via a thermal decomposition process. J Mater Res 33:601–610

    Article  CAS  Google Scholar 

  32. Balamurugan S, Balu AR, Narasimman V, Selvan G, Usharani K, Srivind J, Suganya M, Manjula N, Rajashree C, Nagarethinam VS (2019) Multimetal oxide CdO-Al2O3-NiO nanocomposite-synthesis, photocatalytic and magnetic properties. Mater Res Exp 6(1):015022

    Article  CAS  Google Scholar 

  33. Mardiroosi A, Mahjoub AR, Fakhri H (2017) Efficient visible-light photocatalytic activity based on magnetic graphene oxide decorated ZnO/NiO. J Mater Sci Mater Electron 28:11722–11732

    Article  CAS  Google Scholar 

  34. Najafian H, Manteghi F, Beshkar F, Salavati-Niasari M (2019) Enhanced photocatalytic activity of a novel NiO/Bi2O3/Bi3ClO4 nanocomposite for the degradation of azo dye pollutants under visible light irradiation. Sep Purif Technol 209:6–17

    Article  CAS  Google Scholar 

  35. Ezhilarasi AA, Vijaya JJ, Kaviyarasu K, Kennedy LJ, Ramalingam RJ, Al-Lohedan HA (2018) Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. J Photochem Photobiol B Biol 180:39–50

    Article  CAS  Google Scholar 

  36. Farouq R (2018) Investigation of the kinetics and optimization of photocatalytic degradation of methylene blue. J Chin Chem Soc 65:1333–1339

    Article  CAS  Google Scholar 

  37. Sabouri Z, Akbari A, Hosseini HA, Hashemzadeh A, Darroudi M (2019) Bio-based synthesized NiO nanoparticles and evaluation of their cellular toxicity and wastewater treatment effects. J Mol Struct

  38. Ahamed M, Ali D, Alhadlaq HA, Akhtar MJ (2013) Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce an apoptotic response in human liver cells (HepG2). Chemosphere 93:2514–2522

    Article  CAS  PubMed  Google Scholar 

  39. Xiao H, Yao S, Liu H, Qu F, Zhang X, Wu X (2016) NiO nanosheet assembles for supercapacitor electrode materials. Prog Nat Sci Mater Int 26:271–275

    Article  CAS  Google Scholar 

  40. Bose P, Ghosh S, Basak S, Naskar MK (2016) A facile synthesis of mesoporous NiO nanosheets and their application in CO oxidation. J Asian Ceram Soc 4:1–5

    Article  Google Scholar 

  41. Derakhshi M, Jamali T, Elyasi M, Bijad M, Sadeghi R, Kamali A, Niazazari K, Shahmiri MR, Bahari A, Mokhtari S (2013) Synthesis and characterization of NiO nanoparticle as a high sensitive voltammetric sensor for vitamin C determination in food samples. Int J Electrochem Sci 8:8252–8263

    CAS  Google Scholar 

  42. Sabouri Z, Akbari A, Hosseini HA, Hashemzadeh A, Darroudi M (2019) Eco-friendly biosynthesis of nickel oxide nanoparticles mediated by okra plant extract and investigation of their photocatalytic, magnetic, cytotoxicity, and antibacterial properties. J Clust Sci

  43. Shukla A, Rueff J-P, Badro J, Vanko G, Mattila A, de Groot FF, Sette F (2003) Charge transfer at very high pressure in NiO. Phys Rev B 67:081101

    Article  CAS  Google Scholar 

  44. Karunamoorthy S, Velluchamy M (2018) Design and synthesis of bandgap tailored porous Ag/NiO nanocomposite: a sufficient visible light active photocatalyst for degradation of organic pollutants. J Mater Sci Mater Electron 29:20367–20382

    Article  CAS  Google Scholar 

  45. Liu H, Guo Y, Wang N, Liu B, Zhang Y, Liu H, Chen R (2019) Controllable synthesis and photocatalytic activity of ultrathin hematite nanosheets. J Alloy Compd 771:343–349

    Article  CAS  Google Scholar 

  46. Sabouri Z, Fereydouni N, Akbari A, Hosseini HA, Hashemzadeh A, Amiri MS, Oskuee RK, Darroudi M (2019) Plant-based synthesis of NiO nanoparticles using salvia macrosiphon Boiss extract and examination of their water treatment. Rare Met. https://doi.org/10.1007/s12598-019-01333-z

    Article  Google Scholar 

  47. Khandannasab N, Sabouri Z, Ghazal S, Darroudi M (2019) Green-based synthesis of mixed-phase silver nanoparticles as an effective photocatalyst and investigation of their antibacterial properties. J Mol Struct 127411

  48. Amoresi RA, Felix AA, Botero ER, Domingues NL, Falcão EA, Zaghete MA, Rinaldi AW (2015) Crystallinity, morphology and high dielectric permittivity of NiO nanosheets filling poly (vinylidene fluoride). Ceram Int 41:14733–14739

    Article  CAS  Google Scholar 

  49. Sabouri Z, Akbari A, Hosseini HA, Darroudi M (2018) Facile green synthesis of NiO nanoparticles and investigation of dye degradation and cytotoxicity effects. J Mol Struct 1173:931–936

    Article  CAS  Google Scholar 

  50. Darroudi M, Sabouri Z, Kazemi Oskuee R, Khorsand Zak A, Kargar H, Abd Hamid MHN (2014) Green chemistry approach for the synthesis of ZnO nanopowders and their cytotoxic effects. Ceram Int 40:4827–4831

    Article  CAS  Google Scholar 

  51. Kora AJ, Sashidhar R (2018) Biogenic silver nanoparticles synthesized with rhamnogalacturonan gum: antibacterial activity, cytotoxicity, and its mode of action. Arab J Chem 11:313–323

    Article  CAS  Google Scholar 

  52. van Meerloo J, Kaspers GJ, Cloos J (2011) Cell sensitivity assays: the MTT assay. Cancer cell culture. Springer, Berlin

    Google Scholar 

Download references

Acknowledgements

The technical support for this work has been provided by Payame Noor University of Mashhad and Mashhad University of Medical Sciences based on the Ph.D. thesis of Ms. Z. Sabouri.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Darroudi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabouri, Z., Akbari, A., Hosseini, H.A. et al. Tragacanth-mediate synthesis of NiO nanosheets for cytotoxicity and photocatalytic degradation of organic dyes. Bioprocess Biosyst Eng 43, 1209–1218 (2020). https://doi.org/10.1007/s00449-020-02315-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02315-7

Keywords

Navigation