Skip to main content
Log in

Efficient brazzein production in yeast (Kluyveromyces lactis) using a chemically defined medium

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The sweet-tasting protein brazzein offers considerable potential as a functional sweetener with antioxidant, anti-inflammatory, and anti-allergic properties. Here, we optimized a chemically defined medium to produce secretory recombinant brazzein in Kluyveromyces lactis, with applications in mass production. Compositions of defined media were investigated for two phases of fermentation: the first phase for cell growth, and the second for maximum brazzein secretory production. Secretory brazzein expressed in the optimized defined medium exhibited higher purity than in the complex medium; purification was by ultrafiltration using a molecular weight cutoff, yielding approximately 107 mg L−1. Moreover, the total media cost in this defined medium system was approximately 11% of that in the optimized complex medium to generate equal amounts of brazzein. Therefore, the K. lactis expression system is useful for mass-producing recombinant brazzein with high purity and yield at low production cost and indicates a promising potential for applications in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

BCA:

Bicinchoninic acid

BSA:

Bovine serum albumin

DMSO:

Dimethyl sulfoxide

GRAS:

Generally recognized as safe

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

SIAM:

Single-interval adjustment matrix

References

  1. Singh GM, Micha R, Khatibzadeh S, Lim S, Ezzati M, Mozaffarian D (2015) Estimated global, regional, and national disease burdens related to sugar-sweetened beverage consumption in 2010. Circulation 132:639–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wintjens R, Viet TM, Mbosso E, Huet J (2011) Hypothesis/review: the structural basis of sweetness perception of sweet-tasting plant proteins can be deduced from sequence analysis. Plant Sci 181:347–354

    Article  CAS  PubMed  Google Scholar 

  3. Hellekant G, Danilova V (2005) Brazzein a small, sweet protein: discovery and physiological overview. Chem Senses 30:88–89

    Article  Google Scholar 

  4. Gao GH, Dai JX, Ding M, Hellekant G, Wang JF, Wang DC (1999) Solution conformation of brazzein by 1H nuclear magnetic resonance: resonance assignment and secondary structure. Int J Biol Macromol 24:351–359

    Article  CAS  PubMed  Google Scholar 

  5. Ming D, Hellekant G (1994) Brazzein, a new high-potency thermostable sweet protein from Pentadiplandra brazzeana B. FEBS Lett 355:106–108

    Article  CAS  PubMed  Google Scholar 

  6. Assadi-Porter FM, Aceti DJ, Markley JL (2000) Sweetness determinant sites of brazzein, a small, heat-stable, sweet-tasting protein. Arch Biochem Biophys 376:259–265

    Article  CAS  PubMed  Google Scholar 

  7. Berlec A, Tompa G, Slapar N, Fonovic UP, Rogelj I, Strukelj B (2008) Optimization of fermentation conditions for the expression of sweet-tasting protein brazzein in Lactococcus lactis. Lett Appl Microbiol 46:227–231

    Article  CAS  PubMed  Google Scholar 

  8. Lamphear BJ, Barker DK, Brooks CA, Delaney DE, Lane JR, Beifuss K, Love R, Thompson K, Mayor J, Clough R, Harkey R, Poage M, Drees C, Horn ME, Streatfield SJ, Nikolov Z, Woodard SL, Hood EE, Jilka JM, Howard JA (2005) Expression of the sweet protein brazzein in maize for production of a new commercial sweetener. Plant Biotechnol J 3:103–114

    Article  CAS  PubMed  Google Scholar 

  9. Poirier N, Roudnitzky N, Brockhoff A, Belloir C, Maison M, Thomas-Danguin T, Meyerhof W, Briand L (2012) Efficient production and characterization of the sweet-tasting brazzein secreted by the yeast Pichia pastoris. J Agric Food Chem 60:9807–9814

    Article  CAS  PubMed  Google Scholar 

  10. Yan S, Song H, Pang D, Zou Q, Li L, Yan Q, Fan N, Zhao X, Yu H, Li Z, Wang H, Gao F, Ouyang H, Lai L (2013) Expression of plant sweet protein brazzein in the milk of transgenic mice. PLoS ONE 8:e76769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jo HJ, Noh JS, Kong KH (2013) Efficient secretory expression of the sweet-tasting protein brazzein in the yeast Kluyveromyces lactis. Protein Expr Purif 90:84–89

    Article  CAS  PubMed  Google Scholar 

  12. Kafri M, Metzl-Raz E, Jona G, Barkai N (2016) The cost of protein production. Cell Rep 14:22–31

    Article  CAS  PubMed  Google Scholar 

  13. Li D, Fang H, Gai Y, Zhao J, Jiang P, Wang L, Wei Q, Yu D, Zhang D (2020) Metabolic engineering and optimization of the fermentation medium for vitamin B12 production in Escherichia coli. Bioproc Biosyst Eng 43:1735–1745

    Article  CAS  Google Scholar 

  14. Zhang J, Greasham R (1999) Chemically defined media for commercial fermentations. Appl Microbiol Biotechnol 51:407–421

    Article  CAS  Google Scholar 

  15. Zhang J, Reddy J, Salmon P, Buckland B, Greasham R (1998) Process characterization studies to facilitate validation of a recombinant protein fermentation. ACS Symp Ser 698:12–27

    Article  CAS  Google Scholar 

  16. Knorre W, Deckwer W, Korz D, Pohl H, Riesenberg D, Ross A, Sanders E, Schulz V (1991) High cell density fermentation of recombinant Escherichia coli with computer-controlled optimal growth rate. Ann N Y Acad Sci 646:300–306

    Article  CAS  PubMed  Google Scholar 

  17. Hensing M, Bangma K, Raamsdonk L, de Hulster E, Van Dijken J, Pronk J (1995) Effects of cultivation conditions on the production of heterologous α-galactosidase by Kluyveromyces lactis. Appl Microbiol Biotechnol 43(1):58–64

    Article  CAS  Google Scholar 

  18. Rech FR, Fontana RC, Rosa CA, Camassola M, Ayub MAZ, Dillon AJP (2019) Fermentation of hexoses and pentoses from sugarcane bagasse hydrolysatesinto ethanol by Spathaspora hagerdaliae. Bioproc Biosyst Eng 42:83–92

    Article  CAS  Google Scholar 

  19. Greasham RL, Herber WK (1997) Design and optimization of growth media. In: Rhodes PM, Stanbury PF (eds) Applied microbial physiology - a practical approach. Oxford University Press, Oxford

    Google Scholar 

  20. White MD, Shalita ZP, Marcus D, Reuveny S (1990) A systematic route for optimization of media composition and growth conditions. In: White MD, Reuveny S, Shafferman A (eds) Biologics from recombinant microorganisms and animal cells. VCH, Weinheim

    Google Scholar 

  21. Lee JJ, Kong JN, Do HD, Jo DH, Kong KH (2010) Design and efficient soluble expression of a sweet protein, brazzein and minor-form mutant. Bull Korean Chem Soc 31:3830–3833

    Article  CAS  Google Scholar 

  22. Kim MC, Kim DH, Yun CR, Chung JH, Kim HS, Choi HE, Kong KH (2017) Refined single-interval adjustment matrix yes-no task for estimating the absolute thresholds of sweet-tasting molecules. J Sens Stud 32:e12250

    Article  Google Scholar 

  23. Moon SH, Parulekar SJ (1991) A parametric study ot protease production in batch and fed-batch cultures of Bacillus firmus. Biotechnol Bioeng 37:467–483

    Article  CAS  PubMed  Google Scholar 

  24. Zhou X, Chandarajoti K, Pham TQ, Liu R, Liu J (2011) Expression of heparan sulfate sulfotransferases in Kluyveromyces lactis and preparation of 3′-phosphoadenosine-5′-phosphosulfate. Glycobiology 21:771–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li S, Shen W, Chen X, Shi G, Wang Z (2011) Secretory expression of Rhizopus oryzae α-amylase in Kluyveromyces lactis. Afr J Biotechnol 10:4190–4196

    CAS  Google Scholar 

  26. Li Z, Xiong F, Lin Q, d’Anjou M, Daugulis AJ, Yang DS, Hew CL (2001) Low-temperature increases the yield of biologically active herring antifreeze protein in Pichia pastoris. Protein Expr Purif 21:438–445

    Article  PubMed  Google Scholar 

  27. Shi X, Karkut T, Chamankhah M, Alting-Mees M, Hemmingsen SM, Hegedus D (2003) Optimal conditions for the expression of a single-chain antibody (scFv) gene in Pichia pastoris. Protein Expr Purif 28:321–330

    Article  CAS  PubMed  Google Scholar 

  28. Dragosits M, Stadlmann J, Albiol J, Baumann K, Maurer M, Gasser B, Mattanovich D (2009) The effect of temperature on the proteome of recombinant Pichia pastoris. J Proteome Res 8:1380–1392

    Article  CAS  PubMed  Google Scholar 

  29. Hohenblum H, Gasser B, Maurer M, Borth N, Mattanovich D (2004) Effects of gene dosage, promoters, and substrates on unfolded protein stress of recombinant Pichia pastoris. Biotechnol Bioeng 85:367–375

    Article  CAS  PubMed  Google Scholar 

  30. Yang M, Johnson SC, Murthy PP (2012) Enhancement of alkaline phytase production in Pichia pastoris: influence of gene dosage, sequence optimization and expression temperature. Protein Expr Purif 84:247–254

    Article  CAS  PubMed  Google Scholar 

  31. Wésolowski-Louvel M, Breunig KD, Fukuhara H (1996) Kluyveromyces lactis. In: Wolf K (ed) Nonconventional yeasts in biotechnology. Springer, Berlin

    Google Scholar 

  32. Escalante-Chong R, Savir Y, Carroll SM, Ingraham JB, Wang J, Marx CJ, Springer M (2015) Galactose metabolic genes in yeast respond to a ratio of galactose and glucose. Proc Natl Acad Sci USA 112:1636–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hsieh HB, Da Silva NA (2000) Development of a LAC4 promoter-based gratuitous induction system in Kluyveromyces lactis. Biotechnol Bioeng 67:408–416

    Article  CAS  PubMed  Google Scholar 

  34. Napp SJ, Da Silva NA (1994) Catabolite repression and induction time effects for a temperature-sensitive GAL-regulated yeast expression system. J Biotechnol 32:239–248

    Article  CAS  PubMed  Google Scholar 

  35. Dong J, Dickson RC (1997) Glucose represses the lactose-galactose regulon in Kluyveromyces lactis through a SNF1 and MIG1-dependent pathway that modulates galactokinase (GAL1) gene expression. Nucleic Acids Res 25:3657–3664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Park TH, Seo JH, Lim HC (1989) Optimization of fermentation processes using recombinant Escherichia coli with the cloned trp operon. Biotechnol Bioeng 34:1167–1177

    Article  CAS  PubMed  Google Scholar 

  37. Seressiotis A, Bailey JE (1987) Optimal gene expression and amplification strategies for batch and continuous recombinant cultures. Biotechnol Bioeng 29:392–398

    Article  CAS  PubMed  Google Scholar 

  38. Nancib N, Nancib A, Boudjelal A, Benslimane C, Blanchard F, Boudrant J (2001) The effect of supplementation by different nitrogen sources on the production of lactic acid from date juice by Lactobacillus casei subsp. rhamnosus. Bioresour Technol 78:149–153

    Article  CAS  PubMed  Google Scholar 

  39. Johnvesly B, Naik G (2001) Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in a chemically defined medium. Process Biochem 37:139–144

    Article  CAS  Google Scholar 

  40. Yu Z-W, Quinn PJ (1994) Dimethyl sulphoxide: a review of its applications in cell biology. Biosci Rep 14:259–281

    Article  CAS  PubMed  Google Scholar 

  41. André N, Cherouati N, Prual C, Steffan T, Zeder-Lutz G, Magnin T, Pattus F, Michel H, Wagner R, Reinhart C (2006) Enhancing functional production of G protein-coupled receptors in Pichia pastoris to levels required for structural studies via a single expression screen. Protein Sci 15:1115–1126

    Article  PubMed  PubMed Central  Google Scholar 

  42. Figler RA, Omote H, Nakamoto RK, Al-Shawi MK (2000) Use of chemical chaperones in the yeast Saccharomyces cerevisiae to enhance heterologous membrane protein expression: high-yield expression and purification of human P-glycoprotein. Arch Biochem Biophys 376:34–46

    Article  CAS  PubMed  Google Scholar 

  43. Lee H-M, Park S-W, Lee S-J, Kong K-H (2019) Optimized production and quantification of the tryptophan-deficient sweet-tasting protein brazzein in Kluyveromyces lactis. Prep Biochem Biotechnol 49:790–799

    Article  CAS  PubMed  Google Scholar 

  44. Assadi-Porter FM, Patry S, Markley JL (2008) Efficient and rapid protein expression and purification of small high disulfide containing sweet protein brazzein in E. coli. Protein Expr Purif 58:263–268

    Article  CAS  PubMed  Google Scholar 

  45. Yun CR, Kong JN, Chung JH, Kim MC, Kong KH (2016) Improved secretory production of the sweet-tasting protein, brazzein, in Kluyveromyces lactis. J Agric Food Chem 64:6312–6316

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a National Research Foundation of Korea Grant funded by the Korean Government (no. 2018R1D1A1B07043467) and the Chung-Ang University Graduate Research Scholarship Grants in 2018.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tae Jung Park or Kwang-Hoon Kong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, SW., Kang, BH., Lee, HM. et al. Efficient brazzein production in yeast (Kluyveromyces lactis) using a chemically defined medium. Bioprocess Biosyst Eng 44, 913–925 (2021). https://doi.org/10.1007/s00449-020-02499-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02499-y

Keywords

Navigation