Skip to main content

Yeast Biomass: A By-Product for Application in the Food, Energy, Plastics, and Pharmaceutical Industries

  • Chapter
  • First Online:
Handbook of Waste Biorefinery

Abstract

The production of beer and bread by using exogenous yeast of Saccharomyces cerevisiae became an usual practice at the end of the nineteenth century and its use by wineries in new wine regions of the USA, South Africa, Australia, and New Zealand occurred in the 50s decade and large quantities of dry yeasts started to be generated in European countries by yeast biomass producing industries in the 60s. As a result, there was a great demand for yeast biomass, mainly by the industries of alcoholic beverages fermented and distilled. Yeast biomass is an important raw material for the beverage industry and also an important by-product of that industry. Especially, the production of beer which initially started as a hand make activity has become an industrial power around the world and for this reason, yeast biomass is one of the by-products of the beer-brewing process. In addition to the industrial importance of yeast biomass reported before, the existence of a large number of academic researches enhances the importance of yeasts, especially Saccharomyces cerevisiae and related species that can be used to produce important compounds in the food, energy, and pharmaceutical fields. Finally, recent studies developed at the molecular level have achieved significant advances in the field of genetic engineering intending to convert raw materials into products of good quality and high value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abghari A, Chen S (2014) Yarrowia lipolytica as an oleaginous cell factory platform for production of fatty acid-based biofuel and bioproducts. Front Energy Res. https://doi.org/10.3389/fenrg.2014.00021

  • Ahmad A, Banat F, Taher H (2020) A review on the lactic acid fermentation from low-cost renewable materials: recent developments and challenges. Environ Technol Innov 20:101138

    Article  Google Scholar 

  • Albertin W, Marullo P, Aigle M, Bourgais A, Bely M, Dillmann C, De Vienne D, Sicard D (2009) Evidence for autotetraploidy associated with reproductive isolation in saccharomyces cerevisiae: towards a new domesticated species. J Evol Biol 22(11):2157–2170

    Article  Google Scholar 

  • Ali K, Mounira NO, Kaki AA, Cherfia R, Benhassine S, Benaissa A, Chaouche NK (2017) Optimization of baker’s yeast production on date extract using response surface methodology (RSM). Foods 6(8):64

    Article  Google Scholar 

  • Anon (n.d.) Non sugar sweeteners market size. Global industry report, 2019-2025. https://www.grandviewresearch.com/industry-analysis/non-sugar-sweeteners-market. Accessed 2 Sep 2021

  • Arous F, Frikha F, Triantaphyllidou IE, Aggelis G, Nasri M, Mechichi T (2016) Potential utilization of agro-industrial wastewaters for lipid production by the oleaginous yeast Debaryomyces etchellsii. J Clean Prod 133:899–909

    Article  Google Scholar 

  • Arous F, Atitallah IB, Nasri M, Mechichi T (2017) A sustainable use of low-cost raw substrates for biodiesel production by the oleaginous yeast wickerhamomyces anomalus. 3 Biotech 7(4):1–10

    Article  Google Scholar 

  • Bae SM, Park YC, Lee TH, Kweon DH, Choi JH, Kim SK, Ryu YW, Seo JH (2004) Production of xylitol by recombinant saccharomyces cerevisiae containing xylose reductase gene in repeated fed-batch and cell-recycle fermentations. Enzym Microb Technol 35(6–7):545–549

    Article  Google Scholar 

  • Baek S-H, Kwon EY, Kim YH, Hahn J-S (2015) Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in saccharomyces cerevisiae. Appl Microbiol Biotechnol 100(6):2737–2748

    Article  Google Scholar 

  • Baptista SL, Cunha JT, Romaní A, Domingues L (2018) Xylitol production from lignocellulosic whole slurry corn cob by engineered industrial saccharomyces cerevisiae PE-2. Bioresour Technol 267:481–491

    Article  Google Scholar 

  • Baptista SL, Costa CE, Cunha JT, Soares PO, Domingues L (2021) Metabolic engineering of saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates. Biotechnol Adv 47(August 2020):107697

    Article  Google Scholar 

  • Bardhan P, Gupta K, Mandal M (2019) Microbes as bio-resource for sustainable production of biofuels and other bioenergy products. In: New and future developments in microbial biotechnology and bioengineering: microbial biotechnology in agro-environmental sustainability. Elsevier, pp 205–222

    Chapter  Google Scholar 

  • Bardhan P, Gupta K, Kishor S, Chattopadhyay P, Chaliha C, Kalita E, Goud VV, Mandal M (2020) Oleaginous yeasts isolated from traditional fermented foods and beverages of Manipur and Mizoram, India, as a potent source of microbial lipids for biodiesel production. Ann Microbiol 70(1):27

    Article  Google Scholar 

  • Becker J, Lange A, Fabarius J, Wittmann C (2015) Top value platform chemicals: bio-based production of organic acids. Curr Opin Biotechnol 36:168–175

    Article  Google Scholar 

  • Bellou S, Triantaphyllidou IE, Aggeli D, Elazzazy AM, Baeshen MN, Aggelis G (2016) Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr Opin Biotechnol 37:24–35

    Article  Google Scholar 

  • Blomqvist J, Pickova J, Tilami SK, Sampels S, Mikkelsen N, Brandenburg J, Sandgren M, Passoth V (2018) Oleaginous yeast as a component in fish feed. Sci Rep 8(1):15945

    Article  Google Scholar 

  • Borneman AR, Schmidt SA, Pretorius IS (2013) At the cutting-edge of grape and wine biotechnology. Trends Genet 29(4):263–271

    Article  Google Scholar 

  • Borodina I, Nielsen J (2014) Advances in metabolic engineering of yeast saccharomyces cerevisiae for production of chemicals. Biotechnol J 9(5):609–620

    Article  Google Scholar 

  • Borodina I, Kildegaard KR, Jensen NB, Blicher TH, Maury JÔ, Sherstyk S, Schneider K, Lamosa P, Herrgård MJ, Rosenstand I, Öberg F, Forster J, Nielsen J (2015) Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in saccharomyces cerevisiae via β-alanine. Metab Eng 27:57–64

    Article  Google Scholar 

  • Calvey CH, Yi Kai S, Willis LB, McGee MS, Jeffries TW (2016) Nitrogen limitation, oxygen limitation, and lipid accumulation in lipomyces starkeyi. Bioresour Technol 200:780–788

    Article  Google Scholar 

  • Canilha L, de Cássia R, Rodrigues LB, Antunes FAF, Chandel AK, dos Santos Milessi TS, das Graças Almeida Felipe M, da Silva SS (2013) Bioconversion of hemicellulose from sugarcane biomass into sustainable products. In: Sustainable degradation of lignocellulosic biomass - techniques, applications and commercialization. IntechOpen

    Google Scholar 

  • Cha JS, Um BH (2020) Levulinic acid production through two-step acidic and thermal treatment of food waste using dilute hydrochloric acid. Korean J Chem Eng 37(7):1149–1156

    Article  Google Scholar 

  • Chen XF, Huang C, Yang XY, Xiong L, De Chen X, Ma LL (2013) Evaluating the effect of medium composition and fermentation condition on the microbial oil production by Trichosporon cutaneum on corncob acid hydrolysate. Bioresour Technol 143:18–24

    Article  Google Scholar 

  • Chen Y, Bao J, Kim IK, Siewers V, Nielsen J (2014) Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in saccharomyces cerevisiae. Metab Eng 22:104–109

    Article  Google Scholar 

  • Chen Z, Huang J, Yao W, Wenjun W, Zhang Y, Liu D (2017) Metabolic engineering of corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose. Metab Eng 39:151–158

    Article  Google Scholar 

  • Cho IH, Peterson DG (2010) Chemistry of bread aroma: a review. Food Sci Biotechnol 19(3):575–582

    Article  Google Scholar 

  • Chung YS, Kim MD, Lee WJ, Ryu YW, Kim JH, Seo JH (2002) Stable expression of xylose reductase gene enhances xylitol production in recombinant saccharomyces cerevisiae. Enzym Microb Technol 30(6):809–816

    Article  Google Scholar 

  • Ciani M, Comitini F, Mannazzu I, Domizio P (2010) Controlled mixed culture fermentation: a new perspective on the use of non-saccharomyces yeasts in winemaking. FEMS Yeast Res 10(2):123–133

    Article  Google Scholar 

  • Cok B, Tsiropoulos I, Roes AL, Patel MK (2014) Succinic acid production derived from carbohydrates: an energy and greenhouse gas assessment of a platform chemical toward a bio-based economy. Biofuels Bioprod Biorefin 8(1):16–29

    Article  Google Scholar 

  • Cyr N, Blanchette M, Price SP, Sheppard JD (2018) Vicinal diketone production and amino acid uptake by two active dry lager yeasts during beer fermentation. J Am Soc Brew Chem 65(3):138–144

    Google Scholar 

  • Deeba F, Pruthi V, Negi YS (2017) Fostering triacylglycerol accumulation in novel oleaginous yeast cryptococcus psychrotolerans IITRFD utilizing groundnut shell for improved biodiesel production. Bioresour Technol 242:113–120

    Article  Google Scholar 

  • Do Yook S, Kim J, Woo HM, Um Y, Lee SM (2019) Efficient lipid extraction from the oleaginous yeast Yarrowia lipolytica using switchable solvents. Renew Energy 132:61–67

    Article  Google Scholar 

  • Duvnjak Z, Turcotte G, Duan ZD (1991) Production of sorbitol and ethanol from Jerusalem artichokes by saccharomyces cerevisiae ATCC 36859. Appl Microbiol Biotechnol 35(6):711–715

    Article  Google Scholar 

  • Ferreira IMPLVO, Pinho O, Vieira E, Tavarela JG (2010) Brewer’s saccharomyces yeast biomass: characteristics and potential applications. Trends Food Sci Technol 21(2):77–84

    Article  Google Scholar 

  • Ferreira R, Skrekas C, Hedin A, Sánchez BJ, Siewers V, Nielsen J, David F (2019) Model-assisted fine-tuning of central carbon metabolism in yeast through DCas9-based regulation. ACS Synth Biol 8(11):2457–2463

    Article  Google Scholar 

  • Finn DA, Stewart GG (2018) Fermentation characteristics of dried brewers yeast: effect of drying on flocculation and fermentation1. J Am Soc Brew Chem 60(3):135–139

    Google Scholar 

  • Fleet GH (2008) Wine yeasts for the future. FEMS Yeast Res 8(7):979–995

    Article  Google Scholar 

  • Govinden R, Pillay B, van Zyl WH, Pillay D (2001) Xylitol production by recombinant saccharomyces cerevisiae expressing the pichia stipitis and candida shehatae XYL1 genes. Appl Microbiol Biotechnol 55(1):76–80

    Article  Google Scholar 

  • Guillamón JM, Barrio E, Querol A (1996) Characterization of wine yeast strains of the saccharomyces genus on the basis of molecular markers: relationships between genetic distance and geographic or ecological origin. Syst Appl Microbiol 19(1):122–132

    Article  Google Scholar 

  • Guirimand G, Sasaki K, Inokuma K, Bamba T, Hasunuma T, Kondo A (2015) Cell surface engineering of saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate. Appl Microbiol Biotechnol 100(8):3477–3487

    Article  Google Scholar 

  • Guirimand G, Inokuma K, Bamba T, Matsuda M, Morita K, Sasaki K, Ogino C, Berrin J-G, Hasunuma T, Kondo A (2019) Cell-surface display technology and metabolic engineering of saccharomyces cerevisiae for enhancing xylitol production from woody biomass. Green Chem 21(7):1795–1808

    Article  Google Scholar 

  • Hallborn J, Walfridsson M, Airaksinen U, Ojamo H, Hahn-Hägerdal B, Penttilä M, Keränen S (1991) Xylitol production by recombinant saccharomyces cerevisiae. Bio/Technology 9(11):1090–1095

    Article  Google Scholar 

  • Hara KY, Saito M, Kato H, Morikawa K, Kikukawa H, Nomura H, Fujimoto T, Hirono-Hara Y, Watanabe S, Kanamaru K, Kondo A (2019) 5-Aminolevulinic acid fermentation using engineered saccharomyces cerevisiae. Microb Cell Factories 18(1):1–8

    Article  Google Scholar 

  • Hermann BG, Blok K, Patel MK (2007) Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change. Environ Sci Technol 41(22):7915–7921

    Article  Google Scholar 

  • Hernández-Pérez AF, Jofre FM, Queiroz SDS, De Arruda PV, Chandel AK, Felipe MDGDA (2020) Biotechnological production of sweeteners. In: Biotechnological production of bioactive compounds. Elsevier, pp 261–292

    Chapter  Google Scholar 

  • Hong K-K, Nielsen J (2012) Metabolic engineering of saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 69(16):2671–2690

    Article  Google Scholar 

  • Hou-Rui Z (2012) Key drivers influencing the large scale production of xylitol. In: D-xylitol: fermentative production, application and commercialization. Springer, pp 267–289

    Chapter  Google Scholar 

  • Huang XF, Wang YH, Shen Y, Peng KM, Lu LJ, Liu J (2019) Using non-ionic surfactant as an accelerator to increase extracellular lipid production by oleaginous yeast cryptococcus curvatus MUCL 29819. Bioresour Technol 274(November 2018):272–280

    Article  Google Scholar 

  • Jain VK, Divol B, Prior BA, Bauer FF (2011) Elimination of glycerol and replacement with alternative products in ethanol fermentation by saccharomyces cerevisiae. J Ind Microbiol Biotechnol 38(9):1427–1435

    Article  Google Scholar 

  • Jiru TM, Groenewald M, Pohl C, Steyn L, Kiggundu N, Abate D (2017) Optimization of cultivation conditions for biotechnological production of lipid by Rhodotorula kratochvilovae (Syn, Rhodosporidium kratochvilovae) SY89 for biodiesel preparation. 3 Biotech 7(2):1–11

    Article  Google Scholar 

  • Jo J-H, Sun-Young O, Lee H-S, Park Y-C, Seo J-H (2015) Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered saccharomyces cerevisiae. Biotechnol J 10(12):1935–1943

    Article  Google Scholar 

  • Khot M, Ghosh D (2017) Lipids of rhodotorula mucilaginosa IIPL32 with biodiesel potential: oil yield, fatty acid profile, fuel properties. J Basic Microbiol 57(4):345–352

    Article  Google Scholar 

  • Kildegaard KR, Wang Z, Chen Y, Nielsen J, Borodina I (2015) Production of 3-hydroxypropionic acid from glucose and xylose by metabolically engineered saccharomyces cerevisiae. Metab Eng Commun 2:132–136

    Article  Google Scholar 

  • Kildegaard KR, Jensen NB, Schneider K, Czarnotta E, Özdemir E, Klein T, Maury J, Ebert BE, Christensen HB, Chen Y, Kim I-K, Herrgård MJ, Blank LM, Forster J, Nielsen J, Borodina I (2016) Engineering and systems-level analysis of saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Microb Cell Factories 15(1):1–13

    Article  Google Scholar 

  • Kim H, Lee HS, Park H, Lee DH, Boles E, Chung D, Park YC (2017) Enhanced production of xylitol from xylose by expression of bacillus subtilis arabinose: H+ symporter and Scheffersomyces stipitis xylose reductase in recombinant saccharomyces cerevisiae. Enzym Microb Technol 107:7–14

    Article  Google Scholar 

  • Kim J-w, Jang JH, Yeo HJ, Seol J, Kim SR, Jung YH (2019) Lactic acid production from a whole slurry of acid-pretreated spent coffee grounds by engineered saccharomyces cerevisiae. Appl Biochem Biotechnol 189(1):206–216

    Article  Google Scholar 

  • Kirchhoff E, Schieberle P (2001) Determination of key aroma compounds in the crumb of a three-stage sourdough Rye bread by stable isotope dilution assays and sensory studies. J Agric Food Chem 49(9):4304–4311

    Article  Google Scholar 

  • Kogje A, Ghosalkar A (2016) Xylitol production by saccharomyces cerevisiae overexpressing different xylose reductases using non-detoxified hemicellulosic hydrolysate of corncob. 3 Biotech 6(2):1–10

    Article  Google Scholar 

  • Kogje AB, Ghosalkar A (2017) Xylitol production by genetically modified industrial strain of saccharomyces cerevisiae using glycerol as co-substrate. J Ind Microbiol Biotechnol 44(6):961–971

    Article  Google Scholar 

  • Kumar A, Shende DZ, Wasewar KL (2020a) Production of levulinic acid: a promising building block material for pharmaceutical and food industry. Mater Today Proc 29:790–793

    Article  Google Scholar 

  • Kumar R, Basak B, Jeon BH (2020b) Sustainable production and purification of succinic acid: a review of membrane-integrated green approach. J Clean Prod 277:123954

    Article  Google Scholar 

  • Ladero V, Ramos A, Wiersma A, Goffin P, Schanck A, Kleerebezem M, Hugenholtz J, Smid EJ, Hols P (2007) High-level production of the low-calorie sugar sorbitol by lactobacillus plantarum through metabolic engineering. Appl Environ Microbiol 73(6):1864–1872

    Article  Google Scholar 

  • Lane S, Xu H, Eun Joong O, Kim H, Lesmana A, Jeong D, Zhang G, Tsai C-S, Jin Y-S, Kim SR (2018) Glucose repression can be alleviated by reducing glucose phosphorylation rate in saccharomyces cerevisiae. Sci Rep 8(1):1–12

    Google Scholar 

  • Laroche C, Gervais P (2003) Achievement of rapid osmotic dehydration at specific temperatures could maintain high saccharomyces cerevisiae viability. Appl Microbiol Biotechnol 60(6):743–747

    Article  Google Scholar 

  • Lee WJ, Ryu YW, Seo JH (2000) Characterization of two-substrate fermentation processes for xylitol production using recombinant saccharomyces cerevisiae containing xylose reductase gene. Process Biochem 35(10):1199–1203

    Article  Google Scholar 

  • Lee JY, Kang CD, Lee SH, Park YK, Cho KM (2015) Engineering cellular redox balance in saccharomyces cerevisiae for improved production of L-lactic acid. Biotechnol Bioeng 112(4):751–758

    Article  Google Scholar 

  • Lee JJ, Crook N, Sun J, Alper HS (2016) Improvement of lactic acid production in saccharomyces cerevisiae by a deletion of Ssb1. J Ind Microbiol Biotechnol 43(1):87–96

    Article  Google Scholar 

  • Legras JL, Merdinoglu D, Cornuet JM, Karst F (2007) Bread, beer and wine: saccharomyces cerevisiae diversity reflects human history. Mol Ecol 16(10):2091–2102

    Article  Google Scholar 

  • Li C, Yang X, Gao S, Wang H, Lin CSK (2017) High efficiency succinic acid production from glycerol via in situ fibrous bed bioreactor with an engineered Yarrowia lipolytica. Bioresour Technol 225:9–16

    Article  Google Scholar 

  • Lian J, Bao Z, Sumeng H, Zhao H (2018) Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains. Biotechnol Bioeng 115(6):1630–1635

    Article  Google Scholar 

  • Lis AV, Schneider K, Weber J, Keasling JD, Jensen MK, Klein T (2019) Exploring small-scale chemostats to scale up microbial processes: 3-hydroxypropionic acid production in S. cerevisiae. Microb Cell Factories 18(1):1–11

    Article  Google Scholar 

  • Litsanov B, Brocker M, Bott M (2012) Toward homosuccinate fermentation: metabolic engineering of corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Appl Environ Microbiol 78(9):3325–3337

    Article  Google Scholar 

  • Mancini E, Mansouri SS, Gernaey KV, Luo J, Pinelo M (2019) From second generation feed-stocks to innovative fermentation and downstream techniques for succinic acid production. Crit Rev Environ Sci Technol 50(18):1829–1873

    Article  Google Scholar 

  • Matsakas L, Hrůzová K, Rova U, Christakopoulos P (2018) Biological production of 3-hydroxypropionic acid: an update on the current status. Fermentation 4(1):13

    Article  Google Scholar 

  • Maury J, Kannan S, Jensen NB, Öberg FK, Kildegaard KR, Forster J, Nielsen J, Workman CT, Borodina I (2018) Glucose-dependent promoters for dynamic regulation of metabolic pathways. Front Bioeng Biotechnol 6:63

    Article  Google Scholar 

  • Miller KJ, Box WG, Boulton CA, Smart KA (2018) Cell cycle synchrony of propagated and recycled lager yeast and its impact on lag phase in fermenter. J Am Soc Brew Chem 70(1):1–9

    Google Scholar 

  • Mussatto SI (2009) Biotechnological potential of brewing industry by-products. In: Biotechnology for agro-industrial residues utilisation: utilisation of agro-residues. Springer, pp 313–326

    Chapter  Google Scholar 

  • Muzumdar AV, Sawant SB, Pangarkar VG (2004) Reduction of maleic acid to succinic acid on titanium cathode. Org Process Res Dev 8(4):685–688

    Article  Google Scholar 

  • Nielsen J, Jewett MC (2008) Impact of systems biology on metabolic engineering of saccharomyces cerevisiae. FEMS Yeast Res 8(1):122–131

    Article  Google Scholar 

  • Novy V, Brunner B, Müller G, Nidetzky B (2017) Toward ‘homolactic’ fermentation of glucose and xylose by engineered saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within Pdc1-Pdc5 deletion background. Biotechnol Bioeng 114(1):163–171

    Article  Google Scholar 

  • Novy V, Brunner B, Nidetzky B (2018) L-lactic acid production from glucose and xylose with engineered strains of saccharomyces cerevisiae: aeration and carbon source influence yields and productivities. Microb Cell Factories 17(1):1–11

    Article  Google Scholar 

  • Oh EJ, Ha SJ, Kim SR, Lee WH, Galazka JM, Cate JHD, Jin YS (2013) Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered saccharomyces cerevisiae. Metab Eng 15(1):226–234

    Article  Google Scholar 

  • Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008) An efficient succinic acid production process in a metabolically engineered corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81(3):459–464

    Article  Google Scholar 

  • Olajire AA (2020) The brewing industry and environmental challenges. J Clean Prod 256:102817

    Article  Google Scholar 

  • Papanikolaou S, Aggelis G (2019) Sources of microbial oils with emphasis to Mortierella (Umbelopsis) isabellina fungus. World J Microbiol Biotechnol 35(4):63

    Article  Google Scholar 

  • Patel A, Matsakas L (2019) A comparative study on de novo and ex novo lipid fermentation by oleaginous yeast using glucose and sonicated waste cooking oil. Ultrason Sonochem 52:364–374

    Article  Google Scholar 

  • Pavsler A, Buiatti S (2008) Lager beer. In: Beer in health and disease prevention. Elsevier, pp 31–43

    Google Scholar 

  • Pavsler A, Buiatti S (2009) Non-lager beer. In: Beer in health and disease prevention. Elsevier, pp 17–30

    Chapter  Google Scholar 

  • Pérez-Torrado R, Gamero E, Gómez-Pastor R, Garre E, Aranda A, Matallana E (2015) Yeast biomass, an optimised product with myriad applications in the food industry. Trends Food Sci Technol 46(2):167–175

    Article  Google Scholar 

  • Podpora B, Swiderski F, Sadowska A, Rakowska R, Wasiak-Zys G (2016) Spent Brewer’s yeast extracts as a new component of functional food. Czech J Food Sci 34(6):554–563

    Article  Google Scholar 

  • Poontawee R, Yongmanitchai W, Limtong S (2018) Lipid production from a mixture of sugarcane top hydrolysate and biodiesel-derived crude glycerol by the oleaginous red yeast, Rhodosporidiobolus fluvialis. Process Biochem 66:150–161

    Article  Google Scholar 

  • Powell C, Fischborn T (2018) Serial repitching of dried lager yeast. J Am Soc Brew Chem 68(1):48–56

    Google Scholar 

  • Probst KV, Vadlani PV (2017) Single cell oil production by Lipomyces starkeyi: biphasic fed-batch fermentation strategy providing glucose for growth and xylose for oil production. Biochem Eng J 121:49–58

    Article  Google Scholar 

  • Quain DE (2006) Yeast supply and propagation in brewing. Woodhead Publishing

    Google Scholar 

  • Rakin M, Baras J, Vukasinovic M (2004) The influence of Brewer’s yeast autolysate and lactic acid bacteria on the production of a functional food additive based on beetroot juice fermentation. Food Technol Biotechnol 42(2):109–113

    Google Scholar 

  • Ramírez-Castrillón M, Jaramillo-Garcia VP, Rosa PD, Landell MF, Duong V, Fabricio MF, Ayub MAZ, Robert V, Henriques JAP, Valente P (2017) The oleaginous yeast Meyerozyma guilliermondii BI281A as a new potential biodiesel feedstock: selection and lipid production optimization. Front Microbiol 8:1776

    Article  Google Scholar 

  • Reed G, Nagodawithana TW (1991) Baker’s yeast production. In: Yeast technology. Springer, pp 261–314

    Chapter  Google Scholar 

  • Romaní A, Morais ES, Soares PO, Freire MG, Freire CSR, Silvestre AJD, Domingues L (2020) Aqueous solutions of deep eutectic systems as reaction media for the saccharification and fermentation of hardwood Xylan into Xylitol. Bioresour Technol 311:123524

    Article  Google Scholar 

  • Ryu AJ, Kim TY, Yang DS, Park JH, Jeong KJ (2018) Engineering of saccharomyces cerevisiae for enhanced production of L-lactic acid by co-expression of acid-stable glycolytic enzymes from Picrophilus torridus. Korean J Chem Eng 35(8):1673–1679

    Article  Google Scholar 

  • Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26(2):100–108

    Article  Google Scholar 

  • Shima J, Kuwazaki S, Tanaka F, Watanabe H, Yamamoto H, Nakajima R, Tokashiki T, Tamura H (2005) Identification of genes whose expressions are enhanced or reduced in baker’s yeast during fed-batch culture process using molasses medium by DNA microarray analysis. Int J Food Microbiol 102(1):63–71

    Article  Google Scholar 

  • Signoretto M, Taghavi S, Ghedini E, Menegazzo F (2019) Catalytic production of levulinic acid (LA) from actual biomass. Molecules 24(15):2760

    Article  Google Scholar 

  • Silveira M, Jonas R (2002) The biotechnological production of sorbitol. Appl Microbiol Biotechnol 59(4–5):400–408

    Google Scholar 

  • Stovicek V, Borodina I, Forster J (2015) CRISPR–Cas system enables fast and simple genome editing of industrial saccharomyces cerevisiae strains. Metab Eng Commun 2:13–22

    Article  Google Scholar 

  • Sugiyama M, Akase S-P, Nakanishi R, Kaneko Y, Harashima S (2016) Overexpression of ESBP6 improves lactic acid resistance and production in saccharomyces cerevisiae. J Biosci Bioeng 122(4):415–420

    Article  Google Scholar 

  • Trofimova Y, Walker G, Rapoport A (2010) Anhydrobiosis in yeast: influence of calcium and magnesium ions on yeast resistance to dehydration–rehydration. FEMS Microbiol Lett 308(1):55–61

    Article  Google Scholar 

  • Turner TL, Zhang G-C, Eun Joong O, Subramaniam V, Adiputra A, Subramaniam V, Skory CD, Jang JY, Byung Jo Y, Park I, Jin Y-S (2016) Lactic acid production from cellobiose and xylose by engineered saccharomyces cerevisiae. Biotechnol Bioeng 113(5):1075–1083

    Article  Google Scholar 

  • Turner TL, Kim E, Hwang CH, Zhang G-C, Liu J-J, Jin Y-S (2017) Short communication: conversion of lactose and whey into lactic acid by engineered yeast. J Dairy Sci 100(1):124–128

    Article  Google Scholar 

  • Varela C, Siebert T, Cozzolino D, Rose L, McLean H, Henschke PA (2009) Discovering a chemical basis for differentiating wines made by fermentation with ‘wild’ indigenous and inoculated yeasts: role of yeast volatile compounds. Aust J Grape Wine Res 15(3):238–248

    Article  Google Scholar 

  • Vyas S, Chhabra M (2019) Assessing oil accumulation in the oleaginous yeast cystobasidium oligophagum JRC1 using dairy waste cheese whey as a substrate. 3 Biotech 9(5):173

    Article  Google Scholar 

  • Wang D, Li Q, Song Z, Zhou W, Zhiguo S, Xing J (2011) High cell density fermentation via a metabolically engineered Escherichia coli for the enhanced production of succinic acid. J Chem Technol Biotechnol 86(4):512–518

    Article  Google Scholar 

  • Watsuntorn W, Chuengcharoenphanich N, Niltaya P, Butkumchote C, Theerachat M, Glinwong C, Qi W, Wang Z, Chulalaksananukul W (2021) A novel oleaginous yeast saccharomyces cerevisiae CU-TPD4 for lipid and biodiesel production. Chemosphere 280(April):130782

    Article  Google Scholar 

  • Wei W, Wu K, Qin Y, Xie Z, Zhu X (2001) Intergeneric protoplast fusion between kluyveromyces and saccharomyces cerevisiae – to produce sorbitol from Jerusalem artichokes. Biotechnol Lett 23(10):799–803

    Article  Google Scholar 

  • Wunderlich S, Back W (2009) General aspects of beer and constituents – (i) beer making, hops and yeast. In: Beer in health and disease prevention. Elsevier, pp 3–16

    Chapter  Google Scholar 

  • Xiberras J, Klein M, de Hulster E, Mans R, Nevoigt E (2020) Engineering saccharomyces cerevisiae for succinic acid production from glycerol and carbon dioxide. Front Bioeng Biotechnol 8:566

    Article  Google Scholar 

  • Yamada R, Wakita K, Mitsui R, Ogino H (2017) Enhanced D-lactic acid production by recombinant saccharomyces cerevisiae following optimization of the global metabolic pathway. Biotechnol Bioeng 114(9):2075–2084

    Article  Google Scholar 

  • Yin X, Li J, Shin H-D, Du G, Liu L, Chen J (2015) Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: advances and prospects. Biotechnol Adv 33(6):830–841

    Article  Google Scholar 

  • Zhang X, Shen H, Yang X, Wang Q, Xue Y, Zhao ZK (2016) Microbial lipid production by oleaginous yeasts on laminaria residue hydrolysates. RSC Adv 6(32):26752–26756

    Article  Google Scholar 

  • Zhu LY, Zong MH, Wu H (2008) Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresour Technol 99(16):7881–7885

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enio Nazaré de Oliveira Junior .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Oliveira, A.M., de Oliveira Junior, E.N. (2022). Yeast Biomass: A By-Product for Application in the Food, Energy, Plastics, and Pharmaceutical Industries. In: Jacob-Lopes, E., Queiroz Zepka, L., Costa Deprá, M. (eds) Handbook of Waste Biorefinery. Springer, Cham. https://doi.org/10.1007/978-3-031-06562-0_16

Download citation

Publish with us

Policies and ethics