Skip to main content
Log in

Nickel oxide/carbon nanotube/polyaniline nanocomposite as bifunctional anode catalyst for high-performance Shewanella-based dual-chamber microbial fuel cell

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A novel nickel oxide/carbon nanotube/polyaniline (NCP) nanocomposite has been prepared and used to modify the electrocatalytic properties of carbon cloth anode in fabricating dual-chamber MFC. The prepared nanocomposite was characterized by scanning electron microscopy, X-ray diffraction, and fourier transform infrared spectroscopy. The carbon cloth coated with the NCP nanocomposite showed the enhanced electrochemical performance as compared to bare carbon cloth anode. The electrochemical properties of the fabricated MFC with the modified anode have been investigated by linear sweep voltammetry and electrochemical impedance spectroscopy. The maximum power density of the MFC using the novel NCP nanocomposite-carbon cloth anode increased by 61.88% compared to that of the bare carbon cloth anode. In comparison to the bare carbon cloth anode, the new composite anode showed 26.8% enhancement of current density output which it can be due to the enhancement of the charge transfer capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemical by using microbial electrochemical technologies. Science 337:686–690

    Article  CAS  Google Scholar 

  2. Alatraktchi FA, Zhang Y, Angelidaki I (2014) Nanomodification of the electrodes in microbial fuel cell: impact of nanoparticle density on electricity production and microbial community. Appl Energy 116:216–222

    Article  CAS  Google Scholar 

  3. Richter H, McCarthy K, Nevin KP, Johnson JP, Rotello VM, Lovley DR (2008) Electricity generation by Geobacter sulfurreducens attached to gold electrodes. Langmuir 24:4367–4371

    Article  Google Scholar 

  4. Fan YZ, Hu HQ, Liu H (2007) Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J Power Sources 171:348–354

    Article  CAS  Google Scholar 

  5. Min B, Logan BE (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 3:5809–5814

    Article  Google Scholar 

  6. Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in microbial fuel cells. Nat Biotechnol 21:1229–1232

    Article  CAS  Google Scholar 

  7. Liu H, Cheng S, Logan BE (2005) Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol 39:5488–5493

    Article  CAS  Google Scholar 

  8. Tsai H-Y, Wu C-C, Leec C-Y, Shiha EP (2009) Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes. J Power Source 194:199–205

    Article  CAS  Google Scholar 

  9. Wong C, Vijayaraghavan V (2012) Nanomechanics of free form and water submerged single layer graphene sheet under axial tension by using molecular dynamics simulation. Mater Sci Eng A 556:420–428

    Article  CAS  Google Scholar 

  10. Liu J, He W, Qu Y, Ren N, Feng Y (2014) Enhanced electricity generation for microbial fuel cell by using electrochemical oxidation to modify carbon cloth anode. J Power Source 265:391–396

    Article  CAS  Google Scholar 

  11. Y-s Oon, Ong S-A, Ho L-N, Wong Y-S, Oon Y-L, Lehl H, Thung W-E (2016) Long-term operation of double chambered microbial fuel cell for bio-electro denitrification. Bioprocess Biosyst Eng 39:893–900

    Article  Google Scholar 

  12. Vijayaraghavan V, Castagne S (2016) Computational model for predicting the effect of process parameters on surface characteristics of mass finished components. Eng Comput 33(3):789–805

    Article  Google Scholar 

  13. Fu YB, Liu ZH, Su G, Zai XR, Ying M, Yu J (2016) Modified carbon anode by MWCNTs/PANI used in marine sediment microbial fuel cell and its electrochemical performance. Fuel Cells 16(3):377–383

    Article  CAS  Google Scholar 

  14. Huang L, Li X, Ren Y, Wang X (2016) In-situ modified carbon cloth with polyaniline/graphene as anode to enhance performance of microbial fuel cell. Int J Hydrogen Energy 41(26):11369–11379

    Article  CAS  Google Scholar 

  15. Liu X-W, Huang Y-X, Sun X-F, Sheng G-P, Zhao F, Wang S-G, Yu H-Q (2014) Conductive carbon nanotube hydrogel as a bioanode for enhanced microbial electrocatalysis. Appl Mater Interfaces 11:8158–8164

    Article  Google Scholar 

  16. Kang YL, Ibrahim S, Pichiah S (2015) Synergetic effect of conductive polymer poly(3,4-ethylenedioxythiophene) with different structural configuration of anode for microbial fuel cell application. Bioresour Technol 189:364–369

    Article  CAS  Google Scholar 

  17. Yuan H, Deng L, Chen Y, Yuan Y (2016) MnO2/Polypyrrole/MnO2 multi-walled-nanotube-modified anode for high-performance microbial fuel cells. Electrochim Acta 196:280–285

    Article  CAS  Google Scholar 

  18. Vijayaraghavan V, Garg A, Wong C, Tai K (2014) Estimation of mechanical properties of nanomaterials using artificial intelligence methods. Appl Phys A Mater Sci Process 116(3):1099–1107

    Article  CAS  Google Scholar 

  19. Mehdinia A, Ziaeib E, Jabbari A (2014) Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells. Electrochim Acta 130:512–518

    Article  CAS  Google Scholar 

  20. Katuri KP, Scott K, Head IM, Picioreanu C, Curtis TP (2011) Microbial fuel cells meet with external resistance. Bioresour Technol 102:2758–2766

    Article  CAS  Google Scholar 

  21. Feng CH, Ma L, Li FB (2010) A polypyrrole/anthraquinone-2, 6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells. Biosens Bioelectron 25:1516–1520

    Article  CAS  Google Scholar 

  22. Yuan Y, Zhou SG, Liu Y, Tang JH (2013) Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells. Environ Sci Technol 47:14525–14532

    Article  CAS  Google Scholar 

  23. He JB, Lin XQ, Pan J (2005) Multi-wall carbon nanotube paste electrode for adsorptive stripping determination of quercetin: a comparison with graphite paste electrode via voltammetry and chronopotentiometry. Electroanalysis 17:1681–1686

    Article  CAS  Google Scholar 

  24. Vijayaraghavan V, Garg A, Gao L, Vijayaraghavan R, Lu G (2016) A finite element based data analytics approach for modeling turning process of Inconel 718 alloys. J Clean Prod 137:1619–1627

    Article  CAS  Google Scholar 

  25. Vijayaraghavan V, Garg A, Wong CH, Tai K, Singru PM, Gao L, Sangwan KS (2014) A molecular dynamics based artificial intelligence approach for characterizing thermal transport in nanoscale material. Thermochim Acta 594:39–49

    Article  CAS  Google Scholar 

  26. Vijayaraghavan V, Wong CH (2013) Temperature, defect and size effect on the elastic properties of imperfectly straight carbon nanotubes by using molecular dynamics simulation. Comput Mater Sci 71:184–191

    Article  CAS  Google Scholar 

  27. Vijayaraghavan V, Wong CH (2014) Torsional characteristics of single walled carbon nanotube with water interactions by using molecular dynamics simulation. Nano Micro Lett 6:268–279

    Article  CAS  Google Scholar 

  28. Vijayaraghavan V, Wong CH (2014) Transport characteristics of water molecules in carbon nanotubes investigated by using molecular dynamics simulation. Comput Mater Sci 89:36–44

    Article  CAS  Google Scholar 

  29. Wong CH, Vijayaraghavan V (2014) Compressive characteristics of single walled carbon nanotube with water interactions investigated by using molecular dynamics simulation. Phys Lett A 378(5):570–576

    Article  CAS  Google Scholar 

  30. HoPark I, Christy M, Kim P, Nahma K-S (2014) Enhanced electrical contact of microbes using Fe3O4/CNT nanocomposite anode in mediator-less microbial fuel cell. Biosens Bioelectron 58:75–80

    Article  Google Scholar 

  31. Wang Y, Li B, Cui D, Xiang X, Li W (2014) Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell. Biosens Bioelectron 51:349–355

    Article  CAS  Google Scholar 

  32. Chang HY, Chang HC, Lee KY (2013) Characteristics of NiO coating on carbon nanotubes for electric double layer capacitor application. Vacuum 87:164–168

    Article  CAS  Google Scholar 

  33. Qiao Y, Wu X-S, Li CM (2014) Interfacial electron transfer of Shewanella putrefaciens enhanced by nanoflaky nickel oxide array in microbial fuel cells. J Power Sour 266:226–231

    Article  CAS  Google Scholar 

  34. Huang J, Zhu N, Yang T, Zhang T, Wu P (2015) Nickel oxide and carbon nanotube composite(NiO/CNT)as a novel cathode non-precious metal catalyst in microbial fuel cells. Biosens Bioelectron 72:332–339

    Article  CAS  Google Scholar 

  35. Lu M, Guo L, Kharkwal S, Wu H, Ng HY, Yau Li S (2013) Manganese-polypyrrole-carbon nanotube, a new oxygen reduction catalyst for air-cathode microbial fuel cells. J Power Source 221:381–386

    Article  CAS  Google Scholar 

  36. Qiao Y, Li CM, Bao S-J, Bao Q-L (2007) Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J Power Source 170:79–84

    Article  CAS  Google Scholar 

  37. Logan BE, Aelterman P, Hamelers B, Rozendal R, Schröer U, Keller J, Freguia S, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  CAS  Google Scholar 

  38. Dong H, Yu H, Wang X, Zhou Q, Sun J (2012) Carbon-supported perovskite oxides as oxygen reduction reaction catalyst in single chambered microbial fuel cells. J Chem Technol Biotechnol 88:774–778

    Article  Google Scholar 

  39. Lee JY, Liang K, An KH, Lee YH (2005) Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance. Synth Met 150:153–157

    Article  CAS  Google Scholar 

  40. Qiao Y, Bao S-J, Li CM, Cui X-Q, Lu Z-S, Guo J (2008) Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells. ACS Nano 2:113–119

    Article  CAS  Google Scholar 

  41. Zou Y, Wang Y (2011) NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries. Nanoscale 3:2615–2620

    Article  CAS  Google Scholar 

  42. Adekunle AS, Oyekunle J, Oluwafemi OS, Joshua AO, Makinde WO, Ogunfowokan AO, Eleruja MA, Ebenso EE (2014) Comparative catalytic properties of Ni(OH)2 and NiO nanoparticles towards the degradation of nitrite (NO2 ) and nitric Oxide (NO). Int J Electrochem Sci 9:3008–3021

    Google Scholar 

  43. Hsu CH, Mansfeld F (2001) Concerning the conversion of the constant phase element parameter Y0 into a capacitance. Corrosion 57:747–748

    Article  CAS  Google Scholar 

  44. Sekar N, Ramasamy RP (2013) Electrochemical impedance spectroscopy for microbial fuel cell characterization. J Microb Biochem Technol 6:2–14

    Google Scholar 

  45. Zhou M, Chi M, Wang H, Jin T (2012) Anode modification by electrochemical oxi-dation: a new practical method to improve the performance of microbial fuel cells. Biochem Eng J 60:151–155

    Article  CAS  Google Scholar 

  46. Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energygeneration. Trends Biotechnol 23:291–298

    Article  CAS  Google Scholar 

  47. Karthikeyan R, Krishnaraj N, Selvam A, Wong JW, Lee PK, Leung MK, Berchmans S (2016) Effect of composites based nickel foam anode in microbial fuel cell using Acetobacter aceti and Gluconobacter roseus as a biocatalysts. Bioresour Technol 217:113–120

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Mohsennia.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nourbakhsh, F., Mohsennia, M. & Pazouki, M. Nickel oxide/carbon nanotube/polyaniline nanocomposite as bifunctional anode catalyst for high-performance Shewanella-based dual-chamber microbial fuel cell. Bioprocess Biosyst Eng 40, 1669–1677 (2017). https://doi.org/10.1007/s00449-017-1822-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1822-y

Keywords

Navigation