Skip to main content
Log in

Enhanced lipid productivity of Chlamydomonas reinhardtii with combination of NaCl and CaCl2 stresses

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Salinity (NaCl) stress treatment is a strategy to induce lipid accumulation in microalgae. This study aimed to investigate the effect of a combination of two salts (NaCl/CaCl2) on lipid productivity of Chlamydomonas reinhardtii. C. reinhardtii was cultured in a two-stage culture comprising 9-day active growth in C medium followed by 3-day salt stress in C medium with various concentrations of NaCl (50‒200 mM)/CaCl2 (100 mM). In salt stress stage, NaCl (200 mM), CaCl2 (100 mM), and the NaCl/CaCl2 mixture inhibited growth but increased the lipid content in C. reinhardtii in comparison with NaCl (0, 50, and 100 mM) conditions. Combinatorial treatment with 100 mM NaCl/100 mM CaCl2 resulted in the highest lipid content (73.4%) and lipid productivity (10.9 mg/L/days), being 3.5- and 2.1-fold, respectively, in salt-free control conditions, and 1.8- and 1.5-folds, respectively, with 200 mM NaCl. Furthermore, 100 mM NaCl/100 mM CaCl2 treatment markedly upregulated glycerol-3-phosphate dehydrogenase (GPDH), lysophosphatidic acid acyltransferase (LPAAT), and diacylglycerol acyltransferase (DAGAT), which are involved in lipid accumulation in C. reinhardtii. The upregulation of these genes with 100 mM NaCl/100 mM CaCl2 resulted in the highest lipid content in C. reinhardtii. Therefore, stress treatment using two salts, 100 mM NaCl/100 mM CaCl2, is a potentially promising strategy to enhance lipid productivity in microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen CY, Zhao XQ, Yen HW, Ho SH, Cheng CL, Lee DJ, Bai FW, Chang JS (2013) Microalgae-based carbohydrates for biofuel production. Biochem Eng J 78:1–10

    Article  CAS  Google Scholar 

  2. Peng K, Li J, Jiao K, Zeng X, Lin L, Pan S, Danquah MK (2018) The bioeconomy of microalgal biofuels. In: Jacob LE, Queiroz ZL, Queiroz M (eds) Energy from microalgae. Springer, Cham

  3. Salih FM, Haase RA (2012) Potentials of microalgal biofuel production. J Pet Technol Altern Fuels 3:1–4

    CAS  Google Scholar 

  4. Singh A, Nigam PS, Murphy JD (2011) Mechanism and challenges in commercialisation of algal biofuels. Bioresour Technol 102:26–34

    Article  CAS  Google Scholar 

  5. Su Y, Song K, Zhang P, Su Y, Cheng J, Chen X (2017) Progress of microalgae biofuel’s commercialization. Renew Sustain Energy Rev 74:402–411

    Article  Google Scholar 

  6. Yen HW, Hu IC, Chen CY, Ho SH, Lee DJ, Chang JS (2013) Microalgae-based biorefinery—from biofuels to natural products. Bioresour Technol 135:166–174

    Article  CAS  Google Scholar 

  7. Ho SH, Nakanishi A, Ye X, Chang JS, Hara K, Hasunuma T, Kondo A (2014) Optimizing biodiesel production in marine Chlamydomonas sp. JSC4 through metabolic profiling and an innovative salinity-gradient strategy. Biotechnol Biofuels 7:97

    Article  Google Scholar 

  8. Lin Q, Zhuo WH, Wang XW, Chen CP, Gao YH, Liang JR (2018) Effects of fundamental nutrient stresses on the lipid accumulation profiles in two diatom species Thlassiosira weissflogii and Chaetoceros muelleri. Bioprocess Biosyst Eng 41:1213–1224

    Article  CAS  Google Scholar 

  9. Rios LF, Klein BC, Luz LF Jr, Maciel Filho R, Wolf Maciel MR (2015) Nitrogen starvation for lipid accumulation in the microalga species Desmodesmus sp. Appl Biochem Biotechnol 175:469–476

    Article  CAS  Google Scholar 

  10. Gorain PC, Bagchi SK, Mallick N (2013) Effects of calcium, magnesium and sodium chloride in enhancing lipid accumulation in two green microalgae. Environ Technol 34:1887–1894

    Article  CAS  Google Scholar 

  11. Hamed SM, Selim S, Klöck G, AbdElgawad H (2017) Sensitivity of two green microalgae to copper stress: growth, oxidative and antioxidants analyses. Ecotoxicol Environ Saf 144:19–25

    Article  CAS  Google Scholar 

  12. Vince O, Wendy AS, Péter B, Adeyemi OA, Ambrose O, Csaba L, Zoltán M, Johannes VS (2016) Effect of temperature and nitrogen concentration on lipid productivity and fatty acid composition in three Chlorella strains. Algal Res 16:141–149

    Article  Google Scholar 

  13. Abinandan S, Subashchandrabose SR, Cole N, Dharmarajan R, Venkateswarlu K, Megharaj M (2019) Sustainable production of biomass and biodiesel by acclimation of non-acidophilic microalgae to acidic conditions. Bioresour Technol 271:316–324

    Article  CAS  Google Scholar 

  14. Bartley ML, Boeing WJ, Dungan BN, Holguin FO, Schaub T (2014) pH effects on growth and lipid accumulation of the biofuel microalgae Nannochloropsis salina and invading organisms. J Appl Phycol 26:1431–1437

    Article  CAS  Google Scholar 

  15. Fan J, Zheng L (2017) Acclimation to NaCl and light stress of heterotrophic Chlamydomonas reinhardtii for lipid accumulation. J Biosci Bioeng 124:302–308

    Article  CAS  Google Scholar 

  16. Kato Y, Ho SH, Vavricka CJ, Chang JS, Hasunuma T, Kondo A (2017) Evolutionary engineering of salt-resistant Chlamydomonas sp. strains reveals salinity stress-activated starch-to-lipid biosynthesis switching. Bioresour Technol 245:1484–1490

    Article  CAS  Google Scholar 

  17. Khona DK, Shirolikar SM, Gawde KK, Hom E, Deodhar MA, D’Souza JS (2016) Characterization of salt stress-induced palmelloids in the green alga, Chlamydomonas reinhardtii. Algal Res 16:434–448

    Article  Google Scholar 

  18. Pandit PR, Fulekar MH, Karuna MSL (2017) Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris. Environ Sci Pollut Res Int 24:13437–13451

    Article  CAS  Google Scholar 

  19. Kakarla R, Choi JW, Yun JH, Kim BH, Heo J, Lee S, Cho DH, Ramanan R, Kim HS (2018) Application of high-salinity stress for enhancing the lipid productivity of Chlorella sorokiniana HS1 in a two-phase process. J Microbiol 56:56–64

    Article  CAS  Google Scholar 

  20. Pancha I, Chokshi K, Maurya R, Trivedi K, Patidar SK, Ghosh A, Mishra S (2015) Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol 189:341–348

    Article  CAS  Google Scholar 

  21. Ji X, Cheng J, Gong D, Zhao X, Qi Y, Su Y, Ma W (2018) The effect of NaCl stress on photosynthetic efficiency and lipid production in freshwater microalga—Scenedesmus obliquus XJ002. Sci Total Environ 633:593–599

    Article  CAS  Google Scholar 

  22. Zhang L, Pei H, Chen S, Jiang L, Hou Q, Yang Z, Yu Z (2018) Salinity-induced cellular cross-talk in carbon partitioning reveals starch-to-lipid biosynthesis switching in low-starch freshwater algae. Bioresour Technol 250:449–456

    Article  CAS  Google Scholar 

  23. Salama ES, Kim HC, Abou-Shanab RA, Ji MK, Oh YK, Kim SH, Jeon BH (2013) Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress. Bioprocess Biosyst Eng 36:827–833

    Article  CAS  Google Scholar 

  24. Chen H, Zhang Y, He C, Wang Q (2014) Ca2+ signal transduction related to neutral lipid synthesis in an oil-producing green alga Chlorella sp. C2. Plant Cell Physiol 55:634–644

    Article  CAS  Google Scholar 

  25. Ren HY, Liu BF, Kong F, Zhao L, Xie GJ, Ren NQ (2014) Enhanced lipid accumulation of green microalga Scenedesmus sp. by metal ions and EDTA addition. Bioresour Technol 169:763–767

    Article  CAS  Google Scholar 

  26. Srivastava G, Nishchal GVV (2017) Salinity induced lipid production in microalgae and cluster analysis (ICCB 16-BR_047). Bioresour Technol 242:244–252

    Article  CAS  Google Scholar 

  27. Scranton MA, Ostrand JT, Fields FJ, Mayfield SP (2015) Chlamydomonas as a model for biofuels and bio-products production. Plant J 82:523–531

    Article  CAS  Google Scholar 

  28. Lv H, Qu G, Qi X, Lu L, Tian C, Ma Y (2013) Transcriptome analysis of Chlamydomonas reinhardtii during the process of lipid accumulation. Genomics 101:229–237

    Article  CAS  Google Scholar 

  29. Driver T, Trivedi DK, McIntosh OA, Dean AP, Goodacre R, Pittman JK (2017) Two glycerol-3-phosphate dehydrogenases from Chlamydomonas have distinct roles in lipid metabolism. Plant Physiol 174:2083–2097

    Article  CAS  Google Scholar 

  30. Luis P, Behnke K, Toepel J, Wilhelm C (2006) Parallel analysis of transcript levels and physiological key parameters allows the identification of stress phase gene markers in Chlamydomonas reinhardtii under copper excess. Plant Cell Environ 29:2043–2054

    Article  CAS  Google Scholar 

  31. Hipkins MF, Baker NR (1986) Photosynthesis energy transduction: a practical approach spectroscopy. IRL Press, Oxford

    Google Scholar 

  32. Ansari FA, Gupta SK, Shriwastav A, Guldhe A, Rawat I, Bux F (2017) Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass. Environ Sci Pollut Res 24:15299–15307

    Article  CAS  Google Scholar 

  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCt method. Methods 25:402–408

    Article  CAS  Google Scholar 

  34. Alvensleben NV, Magnusson M, Heimann K (2016) Salinity tolerance of four freshwater microalgal species and the effects of salinity and nutrient limitation on biochemical profiles. J Appl Phycol 28:861–876

    Article  Google Scholar 

  35. Kwak M, Park WK, Shin SE, Koh HG, Lee B, Bryool J, Chang YK (2017) Improvement of biomass and lipid yield under stress conditions by using diploid strains of Chlamydomonas reinhardtii. Algal Res 26:180–189

    Article  Google Scholar 

  36. Wang N, Qian Z, Luo M, Fan S, Zhang X, Zhang L (2018) Identification of salt stress responding genes using transcriptome analysis in green alga Chlamydomonas reinhardtii. Int J Mol Sci 19:3359

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Advanced Low Carbon Technology Research and Development Program of the Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Toyama.

Ethics declarations

Conflict of interest

All the authors reviewed and agreed to submit this manuscript. The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

The study does not contain experiments using animals and human studies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hang, L.T., Mori, K., Tanaka, Y. et al. Enhanced lipid productivity of Chlamydomonas reinhardtii with combination of NaCl and CaCl2 stresses. Bioprocess Biosyst Eng 43, 971–980 (2020). https://doi.org/10.1007/s00449-020-02293-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02293-w

Keywords

Navigation