Skip to main content
Log in

Optimization of biodiesel synthesis by esterification using a fermented solid produced by Rhizopus microsporus on sugarcane bagasse

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A fermented solid containing lipases was produced by solid-state fermentation of Rhizopus microsporus on sugarcane bagasse enriched with urea, soybean oil, and a mineral solution. The dry fermented solid produced using R. microsporus (RMFS) was used to catalyze the synthesis of alkyl-esters by esterification in a solvent-free system containing ethanol and oleic acid (as a model system) or a mixture of fatty acids obtained from the physical hydrolysis of soybean soapstock acid oil (FA-SSAO) in subcritical water. The conversions were 93.5 and 84.1%, for oleic acid and FA-SSAO, respectively, at 48 h and 40 °C, at a molar ratio (MR) of ethanol to fatty acid of 5:1. A further increase in the MR to 10:1 improved the production of ethylic-esters, giving conversions at 48 h of 98 and 86% for oleic acid and FA-SSAO, respectively. The results obtained in this work foster further studies on scaling-up of an environmentally friendly process to produce biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Van Gerpen J (2005) Biodiesel processing and production. Fuel Process Technol 86:1097–1107

    Article  Google Scholar 

  2. Bankovic-Ilic IB, Stamenkovic OS, Veljkovic VB (2012) Biodiesel production from non-edible plant oils. Renew Sust Energ Rev 16:3621–3647

    Article  CAS  Google Scholar 

  3. Véras IC, Silva FAL, Ferrão-Gonzales AD, Moreau VH (2011) One-step enzymatic production of fatty acid ethyl ester from high-acidity waste feedstocks in solvent-free media. Bioresour Technol 102:9653–9658

    Article  Google Scholar 

  4. Hama S, Kondo A (2013) Enzymatic biodiesel production: An overview of potential feedstocks and process development. Bioresour Technol 135:386–395

    Article  CAS  Google Scholar 

  5. Aguieiras ECG, Cavalcanti EDC, Castro AM, Langone MAP, Freire DMG (2014) Biodiesel production from Acrocomia aculeata acid oil by (enzyme/enzyme) hydroesterification process: use of vegetable lipase and fermented solid as low-cost biocatalysts. Fuel 135:315–321

    Article  CAS  Google Scholar 

  6. Cavalcanti-Oliveira ED, Silva PR, Ramos AP, Aranda DAG, Freire DMG (2011) Study of soybean oil hydrolysis catalyzed by Thermomyces lanuginosus lipase and its application to biodiesel production via hydroesterification. Enzyme Res 2011:1–9

    Article  Google Scholar 

  7. Aguieiras ECG, Barros DSN, Sousa H, Fernandez-Lafuente R, Freire DMG (2017) Influence of the raw material on the final properties of biodiesel produced using lipase from Rhizomucor miehei grown on babassu cake as biocatalyst of esterification reactions. Renew Energy 113:112–118

    Article  CAS  Google Scholar 

  8. Todeschini JKP, Aguieiras ECG, Castro AM, Langone MAP, Freire DMG, Rodrigues RC (2016) Synthesis of butyl esters via ultrasound-assisted transesterification of macaúba (Acrocomia aculeata) acid oil using a biomass-derived fermented solid as biocatalyst. J Mol Catal B Enzym 133:S213–S219

    Article  Google Scholar 

  9. Tan T, Lu J, Nie K, Deng L, Wang F (2010) Biodiesel production with immobilized lipase: a review. Biotechnol Adv 28:628–634

    Article  CAS  Google Scholar 

  10. Tan T, Shang F, Zhang X (2010) Current development of biorefinery in China. Biotechnol Adv 28:543–555

    Article  Google Scholar 

  11. Aguieiras ECG, Cavalcanti-Oliveira ED, Freire DMG (2015) Current status and new developments of biodiesel production using fungal lipases: a review. Fuel 159:52–67

    Article  CAS  Google Scholar 

  12. Dias GS, Luz LFL Jr, Mitchell DA, Krieger N (2017) Scale-up of biodiesel synthesis in a closed-loop packed-bed bioreactor system using the fermented solid produced by Burkholderia lata LTEB11. Chem Eng J 316:341–349

    Article  CAS  Google Scholar 

  13. Soares D, Pinto AF, Gonçalves AG, Mitchell DA, Krieger N (2013) Biodiesel production from soybean soapstock acid oil by hydrolysis in subcritical water followed by lipase-catalyzed esterification using a fermented solid in a packed-bed reactor. Biochem Eng J 81:15–23

    Article  CAS  Google Scholar 

  14. Galeano JD, Mitchell DA, Krieger N (2017) Biodiesel production by solvent-free ethanolysis of palm oil catalyzed by fermented solids containing lipases of Burkholderia contaminans. Biochem Eng J 127:77–86

    Article  CAS  Google Scholar 

  15. Zago E, Botton V, Alberton D, Córdova J, Yamamoto CI, Côcco LC, Mitchell DA, Krieger N (2014) Synthesis of ethylic esters for biodiesel purposes using lipases naturally immobilized in a fermented solid produced using Rhizopus microsporus. Energy Fuels 28:5197–5203

    Article  CAS  Google Scholar 

  16. Salum TFC, Villeneuve P, Barea B, Yamamoto CI, Côcco LC, Mitchell DA, Krieger N (2010) Synthesis of biodiesel in column fixed-bed bioreactor using the fermented solid produced by Burkholderia cepacia LTEB11. Process Biochem 45:1348–1354

    Article  CAS  Google Scholar 

  17. Han B-Z, Nout RMJ (2000) Effects of temperature, water activity and gas atmosphere on mycelial growth of tempe fungi Rhizopus microsporus var. microsporus and R. microsporus var. oligosporus. World J Microb Biot 16:853–858

    Article  Google Scholar 

  18. Pitol LO, Finkler ATJ, Dias GS, Machado AS, Zanin GM, Mitchell DA, Krieger K (2017) Optimization studies to develop a low-cost medium for production of the lipases of Rhizopus microsporus by solid-state fermentation and scale-up of the process to a pilot packed-bed bioreactor. Process Biochem 62:37–47

    Article  CAS  Google Scholar 

  19. Alberton D, Mitchell DA, Cordova J, Zamora PP, Krieger N (2010) Production of a fermented solid containing lipases of Rhizopus microsporus and its application in the pre-hydrolysis of a high-fat dairy wastewater. Food Technol Biotech 48:28–35

    CAS  Google Scholar 

  20. Rodriguez JA, Mateos JC, Nungaray J, González V, Bhagnagar T, Roussos S, Cordova J, Baratti J (2006) Improving lipase production by nutrient source modification using Rhizopus homothallicus cultured in solid state fermentation. Process Biochem 41:2264–2269

    Article  CAS  Google Scholar 

  21. Tiss A, Carriere F, Verger R (2001) Effects of Arabic gum on interfacial lipases binding and activity. Anal Biochem 294:36–43

    Article  CAS  Google Scholar 

  22. Lowry RR, Tinsley JI (1976) Rapid colorimetric determination of free acids. J Am Oil Chem Soc 53:470–472

    Article  CAS  Google Scholar 

  23. Johnson RA, Wichern DW (1992) Applied multivariate statistical analysis. Upper Saddle River, New Jersey

    Google Scholar 

  24. European Standard EN 14103 (2003) Fat and oil derivatives, fatty acid methyl esters, determination of ester and linolenic acid methyl ester contents. European Committee for Standardization

  25. Chen J-W, Wu W-T (2003) Regeneration of immobilized Candida antarctica lipase for transesterification. J Biosci Bioeng 95:466–469

    Article  CAS  Google Scholar 

  26. Guldhe A, Singh B, Mutanda T, Permaul K, Bux F (2015) Advances in synthesis of biodiesel via enzyme catalysis: novel and sustainable approaches. Renew Sust Energ Rev 41:1447–1464

    Article  CAS  Google Scholar 

  27. Al-Zuhair S, Lig FW, Jun LS (2007) Proposed kinetic mechanism of the production of biodiesel from palm oil using lipase. Process Biochem 42:951–960

    Article  CAS  Google Scholar 

  28. Yadav GD, Devi KM (2004) Immobilized lipase-catalysed esterification and transesterification reactions in non-aqueous media for the synthesis of tetrahydrofurfuryl butyrate: comparison and kinetic modeling. Chem Eng Sci 59:373–383

    Article  CAS  Google Scholar 

  29. Stergiou P-Y, Foukis A, Filippou M, Koukouritaki M, Parapouli M, Theodorou LG, Hatziloukas E, Afendra A, Pandey A, Papamichael EM (2013) Advances in lipase-catalyzed esterification reactions. Biotechnol Adv 31:1846–1859

    Article  CAS  Google Scholar 

  30. Chaibakhsh N, Rahman MBA, Basri M, Salleh AB, Rahman RNZRA. (2009) Effect of alcohol chain length on the optimum conditions for lipase-catalyzed synthesis of adipate esters. Biocatal Biotransformation 27:303–308

    Article  CAS  Google Scholar 

  31. Shimada Y, Watanabe Y, Samukawa T, Sugihara A, Noda H, Fukuda H, Tominaga T (1999) Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. J Am Oil Chem Soc 76:789–793

    Article  CAS  Google Scholar 

  32. Panchal T, Chauhan D, Thomas M, Patel J (2015) Bio based grease a value added product from renewable resources. Ind Crop Prod 63:48–52

    Article  CAS  Google Scholar 

  33. Trivedi T, Aila M, Sharma CD, Gupta P, Kaul S (2015) Clean synthesis of biolubricant range esters using novel liquid lipase enzyme in solvent free medium. Springerplus 4:165

    Article  Google Scholar 

  34. Horner D (2002) Recent trends in environmentally friendly lubricants. J Synth Lubr 18:327–347

    Article  CAS  Google Scholar 

  35. Bucalá V, Foresti ML, Trubiano G, Ferreira ML, Briozzo M, Bottini S (2006) Analysis of solvent-free ethyl oleate enzymatic synthesis at equilibrium conditions. Enzyme Microb Tech 38:914–920

    Article  Google Scholar 

  36. Sandoval G, Condoret JS, Monsan P, Marty A (2002) Esterification by immobilized lipase in solvent-free media: kinetic and thermodynamic arguments. Biotechnol Bioeng 78:313–320

    Article  CAS  Google Scholar 

  37. Soares D, Serres JDS, Corazza ML, Mitchell DA, Gonçalves AG, Krieger N (2015) Analysis of multiphasic behavior during the ethyl-esterification of fatty acids catalyzed by a fermented solid with lipolytic activity in a packed-bed bioreactor in a closed-loop batch system. Fuel 159:364–372

    Article  CAS  Google Scholar 

  38. Foresti ML, Pedernera M, Bucalá V, Ferreira ML (2007) Multiple effects of water on solvent-free enzymatic esterifications. Enzyme Microb Tech 41:62–70

    Article  CAS  Google Scholar 

  39. Foresti ML, Errazu A, Ferreira ML (2005) Effect of several reaction parameters in the solvent-free ethyl oleate synthesis using Candida rugosa lipase immobilised on polypropylene. Biochem Eng J 25:69–77

    Article  CAS  Google Scholar 

  40. Chen JW, Wu WT (2003) Regeneration of immobilized Candida antarctica lipase for transesterification. J Biosci Bioeng 95:466–469

    Article  CAS  Google Scholar 

  41. Fallavena LP, Antunes FHF, Alves JS, Paludo N, Ayub MAZ, Fernández-Lafuente R, Rodrigues RC (2015) Ultrasound technology and molecular sieves improve the thermodynamically controlled esterification of butyric acid mediated by immobilized lipase from Rhizomucor miehei. RSC Adv 4:8675–8681

    Article  Google Scholar 

  42. Botton V (2014) Síntese de ésteres etílicos catalisada pela adição direta desólido fermentado de Rhizopus microsporus CBPQA 312–07 DRM em sistema livre de solventes (Doctoral dissertation). http://www.acervodigital.ufpr.br/bitstream/handle/1884/40541/R%20-%20T%20-%20VANDERLEIA%20BOTTON.pdf . Accessed 2 Sep 2017

  43. LEGISWEB (2018) Resolução ANP Nº 45 DE 25/08/2014. https://www.legisweb.com.br/legislacao/?id=274064. Accessed 19 Jan 2018

  44. Meng Y, Wang G, Yang N, Zhou Z, Juan Y, Liang X, Chen J, Li Y, Li J (2011) Two-step synthesis of fatty acid ethyl ester from soybean oil catalyzed by Yarrowia lipolytica lipase. Biotechnol Biofuels 4:1–9

    Article  Google Scholar 

  45. Adachi D, Hama S, Nakashima K, Bogaki T, Ogino C, Kondo A (2013) Production of biodiesel from plant oil hydrolysates using an Aspergillus oryzae whole-cell biocatalyst highly expressing Candida antarctica lipase B. Bioresour Technol 135:410–416

    Article  CAS  Google Scholar 

  46. Oliveira F, Souza CE, Peclat VROL., Salgado JM, Ribeiro BD, Coelho MAZ, Venâncio A, Belo I (2017) Optimization of lipase production by Aspergillus ibericus from oil cakes and its application in esterification reactions. Food Bioprod Process 102:268–277

    Article  CAS  Google Scholar 

  47. Suwanno S, Rakkan T, Yunu T, Paichid N, Kimtun P, Prasertsan P, Sangkharak K (2017) The production of biodiesel using residual oil from palm oil mill effluent and crude lipase from oil palm fruit as an alternative substrate and catalyst. Fuel 195:82–87

    Article  CAS  Google Scholar 

  48. Li A, Ngo TPN, Yan J, Tian K, Li Z (2012) Whole-cell based solvent-free system for one-pot production of biodiesel from waste grease. Bioresour Technol 114:725–729

    Article  CAS  Google Scholar 

  49. Liu Y, Li C, Meng X, Yan Y (2013) Biodiesel synthesis directly catalyzed by the fermented solid of Burkholderia cenocepacia via solid state fermentation. Fuel Process Technol 106:303–309

    Article  CAS  Google Scholar 

  50. Liu Y, Li C, Wang S, Chen W (2014) Solid-supported microorganism of Burkholderia cenocepacia cultured via solid state fermentation for biodiesel production: optimization and kinetics. Appl Energy 113:713–721

    Article  CAS  Google Scholar 

  51. Stamenkovic OS, Velickovic´ AV, Veljkovic VB (2011) The production of biodiesel from vegetable oils by ethanolysis: current state and perspectives. Fuel 90:3141–3155

    Article  CAS  Google Scholar 

  52. Bressani APP, Garcia KCA, Hirata DB, Mendes AA (2015) Production of alkyl esters from macaw palm oil by a sequential hydrolysis/esterification process using heterogeneous biocatalysts: optimization by response surface methodology. Bioprocess Biosyst Eng 38:287–297

    Article  CAS  Google Scholar 

  53. Ghamgui H, Karra-Chaabouni M, Gargouri Y (2004) 1-Butyl oleate synthesis by immobilized lipase from Rhizopus oryzae: a comparative study between n-hexane and solvent-free system. Enzyme Microb Tech 35:355–363

    Article  CAS  Google Scholar 

  54. Linko YY, Lamsa M, Huhtala A, Rantanen O (1995) Lipase biocatalysis in the production of esters. J Am Oil Chem Soc 72:1293–1299

    Article  CAS  Google Scholar 

  55. Lage FAP, Bassi JJ, Corradini MCC, Todero LM, Luiz JHH, Mendes AA (2016) Preparation of a biocatalyst via physical adsorption of lipase from Thermomyces lanuginosus on hydrophobic support to catalyze biolubricant synthesis by esterification reaction in a solvent-free system. Enzyme Microb Tech 84:56–67

    Article  CAS  Google Scholar 

  56. Salih N, Salimon J, Yousif E (2011) Synthesis of oleic acid based esters as potential basestock for biolubricant production. Turk J Eng Env Sci 35:115–123

    CAS  Google Scholar 

  57. Salimon J, Salih N, Yousif E (2012) Biolubricant basestocks from chemically modified ricinoleic acid. J King Saud Univ Sci 24:11–17

    Article  Google Scholar 

Download references

Acknowledgements

Research scholarships were granted to Nadia Krieger and David Mitchell by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil) and to Vanderleia Botton by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Krieger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botton, V., Piovan, L., Meier, H.F. et al. Optimization of biodiesel synthesis by esterification using a fermented solid produced by Rhizopus microsporus on sugarcane bagasse. Bioprocess Biosyst Eng 41, 573–583 (2018). https://doi.org/10.1007/s00449-018-1892-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-1892-5

Keywords

Navigation