Skip to main content
Log in

Influence of algae species, substrata and culture conditions on attached microalgal culture

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The objective of this study was to understand and optimize the formation of microalgae biofilms in specific culture conditions. Firstly, the adhesion of six freshwater algae species was compared. Chlorococcum sp. was selected because of the high adhesion biomass productivity (ABP) and adhesion rate achieved. Secondly, the adhesion of Chlorococcum sp. was compared with nine commonly used supporting materials, and glass fiber-reinforced plastic proved to be the optimal substrata. Thirdly, based on response surface methodology experiments, a second-order polynomial model was developed to examine the effect of culture period, initial total nitrogen concentration (ITNC) in manure wastewater, pH and culture volume of the growth chamber on the adhesion of Chlorococcum sp. using glass fiber-reinforced plastic. The experimental and modeling results showed that ITNC, pH and culture volume as well as the interactions between culture period and ITNC, culture period and culture volume were significant on ABP. Optimum culture conditions were predicted at a culture period of 11 days, ITNC of 70 mg L−1, pH of 8 and culture volume of 340 mL, under which the predicted maximum ABP was 4.26 g m−2 day−1. The prediction was close to validation experimental results, indicating that the model could be used to guide and optimize the attached culture of Chlorococcum sp. using glass fiber-reinforced plastic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  CAS  Google Scholar 

  2. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(2):294–306

    Article  CAS  Google Scholar 

  3. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639

    Article  CAS  Google Scholar 

  4. Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799

    Article  CAS  Google Scholar 

  5. Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Borowitzka MA, Hankamer B (2010) An economic and technical evaluation of microalgal biofuels. Nat Biotechnol 28:126–128

    Article  CAS  Google Scholar 

  6. Moheimani NR, Borowitzka MA (2006) The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 18:703–712

    Article  Google Scholar 

  7. Carlozzi P (2003) Dilution of solar radiation through “culture lamination” in photobioreactor rows facing south north: a way to improve the efficiency of light utilization. Biotechnol Bioeng 81:305–315

    Article  CAS  Google Scholar 

  8. Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1:143–162

    Article  CAS  Google Scholar 

  9. Liu TZ, Wang JF, Hu Q, Cheng PF, Ji B, Liu JL, Chen Y, Zhang W, Chen XL, Chen L, Gao LL, Ji CL, Wang H (2012) Attached cultivation technology of microalgae for efficient biomass feedstock production. Bioresour Technol 127:216–222

    Article  CAS  Google Scholar 

  10. Mulbry W, Kangas P, Kondrad S (2010) Toward scrubbing the bay: nutrient removal using small algal turf scrubbers on Chesapeake Bay tributaries. Ecol Eng 36(4):536–541

    Article  Google Scholar 

  11. Sekar R, Venugopalan VP, Satpathy KK, Nair KVK, Rao VNR (2004) Laboratory studies on adhesion of microalgae to hard substrates. Biomed Life Sci 173(2):109–116

    Google Scholar 

  12. Yuan WQ, Cui Y, and Pei ZJ (2009) Algal cell–surface interaction: an overview and preliminary test. ASME International Manufacturing Science and Engineering Conference Vol.1 MSEC2009-84222

  13. Johnson MB, Wen ZY (2010) Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biotechnol 85(3):525–534

    Article  CAS  Google Scholar 

  14. Moreno-Garrido I (2008) Microalgae immobilization: current techniques and uses. Bioresour Technol 99(10):3949–3964

    Article  CAS  Google Scholar 

  15. Irving TE, Allen DG (2011) Species and material considerations in the formation and development of microalgal biofilms. Appl Microbiol Biotechnol 92(2):283–294

    Article  CAS  Google Scholar 

  16. Sorokin C, Krauss RW (1958) The effect of light intensity on the growth rates of green algae. Plant Physiol 33:109–113

    Article  CAS  Google Scholar 

  17. Ozkan A, and Berberoglu H (2011) Adhesion of Chlorella vulgaris on hydrophilic and hydrophobic surfaces. In: Proceedings of the ASME 2011 international mechanical engineering congress and exposition, IMECE2011-64133, Denver, Colorado, USA, 1117 November 2011

  18. Li Y, Gao Y, Li X, Yang J, Que G (2010) Influence of surface free energy on the adhesion of marine benthic diatom Nitzschia closterium MMDL533. Colloids Surf B Biointerfaces 75:550–556

    Article  CAS  Google Scholar 

  19. Stanley M, Callow J (2007) Whole cell adhesion strength of morphotypes and isolates of Phaeodactylum tricornutum (Bacillariophyceae). Eur J Phycol 42:191–197

    Article  CAS  Google Scholar 

  20. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Optimization of Nannochloropsis oculata growth using the response surface method. J Chem Technol Biotechnol 81:1049–1056

    Article  CAS  Google Scholar 

  21. Azma M, Mohamed MS, Mohamad R, Rahim RA, Ariff AB (2011) Improvement of medium composition for heterotrophic cultivation of green microalgae, Tetraselmis suecica, using response surface methodology. Biochem Eng J 53(2):187–195

    Article  CAS  Google Scholar 

  22. Shen Y, Yuan W, Pei Z, Mao E (2008) Culture of microalga Botryococcus in livestock wastewater. Trans ASABE 54(4):1395–1400

    Article  Google Scholar 

  23. Urrutia I, Serra JL, Llama MJ (1995) Nitrate removal from water by Scenedesmus obliquus immobilized in polymeric foams. Enzyme Microb Technol 17(3):200–205

    Article  CAS  Google Scholar 

  24. Kebede-Westhead E, Pizarro C, Mulbry W (2006) Treatment of swine manure effluent using freshwater algae: production, nutrient recovery, and elemental composition of algal biomass at four effluent loading rates. J Appl Phycol 18:41–46

    Article  Google Scholar 

  25. Molina Grima EM, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  CAS  Google Scholar 

  26. Valdes FJ, Hernandez MDR, Gomez A, Marcilla A, Chapuli E (2008) Study of the efficiency of different flocculants for effective microalgae harvesting. http://rua.ua.es/dspace/bitstream/10045/8536/1/Poster%20expoquimia%20floculacion%20(2008).pdf

  27. GB 11894–89 (1989) Water quality—determination of total nitrogen–Alkaline potassium persulfate digestion-UV spectrophotometric method. Standards Press of China, Shanghai

    Google Scholar 

  28. GB 11893–93 (1989) Water quality—determination of total phosphorus–Ammonium molybdate spectrophotometric method. Standards Press of China, Shanghai

    Google Scholar 

  29. Bragadeeswaran S, Jeevapriya R, Prabhu K, Sophia Rani S, Priyadharsini S, Balasubramanian T (2011) Expolysaccharide production by Bacillus cereus GU812900, a fouling marine bacterium. Afr J Microbiol Res 5(24):4124–4132

    Article  CAS  Google Scholar 

  30. Domozych DS, Kort S, Benton S, Yu T (2005) The extracellular polymeric substance of the green alga Penium margaritaceum and its role in biofilm formation. Biofilms 2(2):129–144

    Article  Google Scholar 

  31. Domozych DS (2007) Exopolymer production by the green alga Penium margaritaceum: implications for biofilm residency. Int J Plant Sci 168(6):763–774

    Article  CAS  Google Scholar 

  32. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633

    CAS  Google Scholar 

  33. Cao J, Yuan WQ, Pei ZJ, Tiffany D, Yan C, Michael B (2009) A preliminary study of the effect of surface texture on algae cell attachment for a mechanical–biological energy manufacturing system. J Manuf Sci E 131(6):064505

    Article  Google Scholar 

  34. Bos R, van der Mei H, Busscher H (1999) Physico-chemistry of initial microbial adhesive interactions—its mechanisms and methods for study. FEMS Microbiol Rev 23:179–230

    CAS  Google Scholar 

  35. Morikawa M (2006) Review: beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. J Biosci Bioeng 101(1):1–8

    Article  CAS  Google Scholar 

  36. Becker EW (1994) Microalgae: biotechnology and microbiology, vol. 18. Cambridge University, Cambridge, p 24

    Google Scholar 

  37. Shen Y, Yuan W, Pei Z, Mao E (2009) Heterotrophic culture of Chlorella protothecoides in various nitrogen sources for lipid production. Appl Biochem Biotechnol 160(6):1674–1684

    Article  CAS  Google Scholar 

  38. Schenk PM, Thomas-Hall S, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1(3):20–43

    Article  Google Scholar 

  39. Vargas-Garcia MC, Lopez MJ, Elorrieta MA, Suarez F, Moreno J (2001) Influence of nutritional and environmental factors on polysaccharide production by Azotobacter vinelandii cultured on 4-hydroxybenzoic acid. J Ind Microbiol Biotechnol 27:5–10

    Article  CAS  Google Scholar 

  40. Hoa PT, Nair L, Visvanathan C (2003) The effect of nutrients on extracellular polymeric substance production and its influence on sludge properties. Water SA 29:437–442

    CAS  Google Scholar 

  41. Wyatt NB, Gloe LM, Brady PV, Hewson JC, Grillet AM, Hankins MG, Pohl PI (2012) Critical conditions for ferric chloride-induced flocculation of freshwater algae. Biotechnol Bioeng 109(2):493–501

    Article  CAS  Google Scholar 

  42. Zhang H, Kuang Y, Zhe L, Liu C (2011) Influence on surface characteristics of microalgae cell by solution chemistry. Adv Mater Res 287–290:1938–1942

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Natural Science Foundation of China (Award 51108085), “863” Project (No. 2012AA021704), the Natural Science Foundation of Fujian Province (Award No. 2011J05125) and the Program of the Education Department of Fujian Province (Award JA11030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Y., Xu, X., Zhao, Y. et al. Influence of algae species, substrata and culture conditions on attached microalgal culture. Bioprocess Biosyst Eng 37, 441–450 (2014). https://doi.org/10.1007/s00449-013-1011-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1011-6

Keywords

Navigation