Skip to main content

Carbon Nanotube/Polyaniline-Based Nanocomposite Anode for Microbial Fuel Cells

  • Chapter
  • First Online:
Modern Age Environmental Problems and their Remediation

Abstract

It has been described in this chapter that the potentiality of an anode in the Microbial Fuel Cells (MFCs), prepared by Carbon Nanotube/Polyaniline (CNT/PANI) supported nano-composite material. The nanocomposite materials were also characterized based on various advance analytical techniques namely; Fourier Transform Infrared Resonance spectroscopy (FTIR), X-ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) analyses to investigate the chemical composition and morphology of the composite materials. The electrochemical impedance spectroscopy (EIS) and ions discharge experiments are used to evaluate electro catalytic behaviour of the anode in the MFCs. In contrast with the announced execution of various anodes utilized as a part of MFCs, the CNT/PANI composite anode is discovered superb and is found a promising material for the application as an anode material in MFCs. The significant potential of CNT/PANI based anodic electrode is established owing to the conducting behaviour of PANI. On the basis of good conductivity of CNT/PANI nanocomposite, in upcoming years that the fabrication CNT/PANI based anode electrode are expected to open an innovative ways for demonstrating their exceptional application of MFC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akdeniz F, ÇaÄŸlar A, Güllü D et al (2002) Recent energy investigations on fossil and alternative nonfossil resources in Turkey. Energy Convers Manag 43:575–589

    Article  Google Scholar 

  • Allen RM, Bennetto HP (1993) Microbial fuel-cells. Appl Biochem Biotechnol 39:27–40

    Article  Google Scholar 

  • Barton SC, Gallaway J, Atanassov P (2004) Enzymatic biofuel cells for implantable and microscale devices. Chem Rev 104:4867–4886

    Article  CAS  Google Scholar 

  • Baudler A, Schmidt I, Langner M et al (2015) Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy Environ Sci 8:2048–2055

    Article  CAS  Google Scholar 

  • Bhogilla SS, Ito H, Segawa T, Kato A et al (2017) Experimental study on laboratory scale Totalized Hydrogen Energy Utilization System using wind power data. Int J Hydrog Energy 42:13827–13838

    Article  CAS  Google Scholar 

  • Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555

    Article  CAS  Google Scholar 

  • Bond DR, Holmes DE, Tender LM et al (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485

    Article  CAS  Google Scholar 

  • Chan H, Ng S, Sim W et al (1992) Preparation and characterization of electrically conducting copolymers of aniline and anthranilic acid: evidence for self-doping by x-ray photoelectron spectroscopy. Macromolecules 25:6029–6034

    Article  CAS  Google Scholar 

  • Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1229–1232

    Article  CAS  Google Scholar 

  • Danilov M, Melezhyk A (2006) Carbon nanotubes modified with catalyst—promising material for fuel cells. J Power Sources 163:376–381

    Article  CAS  Google Scholar 

  • Davis JB, Yarbrough HF (1962) Preliminary experiments on a microbial fuel cell. Science 137:615–616

    Article  CAS  Google Scholar 

  • Gajendran P, Saraswathi R (2008) Polyaniline-carbon nanotube composites. Pure Appl Chem 80:2377–2395

    Article  CAS  Google Scholar 

  • Kim HJ, Park HS, Hyun MS et al (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzym Microb Technol 30:145–152

    Article  CAS  Google Scholar 

  • Koroneos C, Spachos T, Moussiopoulos N (2003) Exergy analysis of renewable energy sources. Renew Energy 28:295–310

    Article  CAS  Google Scholar 

  • Kulesza PJ, Skunik M, Baranowska B et al (2006) Fabrication of network films of conducting polymer-linked polyoxometallate-stabilized carbon nanostructures. Electrochim Acta 51:2373–2379

    Article  CAS  Google Scholar 

  • Lewis K (1966) Symposium on bioelectrochemistry of microorganisms IV. Biochemical fuel cells. Bacteriol Rev 30:101–113

    CAS  Google Scholar 

  • Li C, Chen W, Yang X et al (2005) Impedance labelless detection-based polypyrrole protein biosensor. Front Biosci 10:2518–2526

    Article  CAS  Google Scholar 

  • Logan BE (2004) Extracting Hydrogen and Electricity from renewable resources. Environ Sci Technol 38:160–167

    Article  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R et al (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  CAS  Google Scholar 

  • Magrez A, Kasas S, Salicio V et al (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6:1121–1125

    Article  CAS  Google Scholar 

  • Min B, Logan BE (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 38:5809–5814

    Article  CAS  Google Scholar 

  • Misra S, Angelucci R (2001) Polyaniline thin film-porous silicon sensors for detection of microorganisms. IJPAP 39:726–730

    CAS  Google Scholar 

  • Nabi SA, Shahadat M, Bushra R et al (2011a) Synthesis and characterization of polyanilineZr (IV) sulphosalicylate composite and its applications (1) electrical conductivity, and (2) antimicrobial activity studies. Chem Eng J 173:706–714

    Article  CAS  Google Scholar 

  • Nabi SA, Shahadat M, Bushra R et al (2011b) Heavy-metals separation from industrial effluent, natural water as well as from synthetic mixture using synthesized novel composite adsorbent. Chem Eng J 175:8–16

    Article  CAS  Google Scholar 

  • Nabi SA, Shahadat M, Bushra R et al (2011c) Synthesis and characterization of nano-composite ion-exchanger; its adsorption behavior. Colloids Surf B: Biointerfaces 87:122–128

    Article  CAS  Google Scholar 

  • Niessen J, Schröder U, Rosenbaum M et al (2004) Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells. Electrochem Commun 6:571–575

    Article  CAS  Google Scholar 

  • Oueiny C, Berlio S, Perrin FX (2014) Carbon nanotube–polyaniline composites. Prog Polym Sci 39:707–748

    Article  CAS  Google Scholar 

  • Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrog Energy 35:9349–9384

    Article  CAS  Google Scholar 

  • Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc Lond B Biol Sci 84:260–276

    Article  Google Scholar 

  • Qiao Y, Li CM, Bao SJ et al (2007) Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J Power Sources 170:79–84

    Article  CAS  Google Scholar 

  • Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298

    Article  CAS  Google Scholar 

  • Rabaey K, Boon N, Siciliano SD et al (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373–5382

    Article  CAS  Google Scholar 

  • Rabaey K, Boon N, Höfte M et al (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39:3401–3408

    Article  CAS  Google Scholar 

  • Rahman NNNA, Shahadat M, Won CA, Omar FM (2014) FTIR study and bioadsorption kinetics of bioadsorbent for the analysis of metal pollutants. RSC Adv 4(102):58156–58163

    Article  Google Scholar 

  • Rao J, Richter G, Von Sturm F et al (1976) The performance of glucose electrodes and the characteristics of different biofuel cell constructions. Bioelectrochem Bioenerg 3:139–150

    Article  CAS  Google Scholar 

  • Rhoads A, Beyenal H, Lewandowski Z (2005) Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol 39:4666–4671

    Article  CAS  Google Scholar 

  • Ringeisen BR, Henderson E, Wu PK et al (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40:2629–2634

    Article  CAS  Google Scholar 

  • Schröder U, Nießen J, Scholz F (2003) A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew Chem Int Ed 42:2880–2883

    Article  Google Scholar 

  • Shahadat M, Bushra R (2015) Synthesis, characterization and significant applications of pani-Zr(IV) sulphosalicylate nanocomposite. Nanotechnol Res J 8(3):393–418

    Google Scholar 

  • Shahadat M, Bushra R, Khan MR et al (2014) A comparative study for the characterization of polyaniline based nanocomposites and membrane properties. RSC Adv 4:20686–20692

    Article  CAS  Google Scholar 

  • Shahadat M, Teng TT, Rafatullah M et al (2015) Titanium-based nanocomposite materials: a review of recent advances and perspectives. Colloids Surf B 126:121–137

    Article  CAS  Google Scholar 

  • Shantaram A, Beyenal H, Veluchamy RRA et al (2005) Wireless sensors powered by microbial fuel cells. Environ Sci Technol 39:5037–5042

    Article  CAS  Google Scholar 

  • Tan CW, Tan KH, Ong YT et al (2012) Energy and environmental applications of carbon nanotubes. Environ Chem Lett 10:265–273

    Article  CAS  Google Scholar 

  • Tardast A, Rahimnejad M, Najafpour G et al (2012) Fabrication and operation of a novel membrane-less microbial fuel cell as a bioelectricity generator. Int J Environ Eng 3:1–5

    Google Scholar 

  • Veziro T, Barbir F (1992) Hydrogen: the wonder fuel. Int J Hydrog Energy 17:391–404

    Article  Google Scholar 

  • Wang C, Waje M, Wang X et al (2004) Proton exchange membrane fuel cells with carbon nanotube based electrodes. Nano Lett 4:345–348

    Article  CAS  Google Scholar 

  • Wang CT, Huang RY, Le YC et al (2013) Electrode material of carbon nanotube/polyaniline carbon paper applied in microbial fuel cells. J Clean Energy Technol 1:206–210

    Article  CAS  Google Scholar 

  • Wu TM, Lin YW, Liao CS (2005) Preparation and characterization of polyaniline/multi-walled carbon nanotube composites. Carbon 43:734–740

    Article  CAS  Google Scholar 

  • Yan Y, Zheng W, Su L et al (2006) Carbon-nanotube-based glucose/O2 biofuel cells. Adv Mater Res 18:2639–2643

    Article  CAS  Google Scholar 

  • Yan J, Wei T, Fan Z et al (2010) Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J Power Sources 195:3041–3045

    Article  CAS  Google Scholar 

  • Zengin H, Zhou W, Jin J et al (2002) Carbon nanotube doped polyaniline. Adv Mater Res 14:1480–1483

    Article  CAS  Google Scholar 

  • Zou Y, Xiang C, Yang L et al (2008) A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material. Int J Hydrog Energy 33:4856–4862

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their appreciations to 1Department of Textile Technology, 2Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi-110016, India. One of the authors (Dr. Md. Shahdat) is very much thankful to SERB-DST (SB/FT/CS-122/2014), Govt. of India for awarding Postdoctoral research grant to carry our research at IIT Delhi.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Shahadat or S. Wazed Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Bairagi, S., Teka, A., Shahadat, M., Ali, S.W., Shaikh, Z.A. (2018). Carbon Nanotube/Polyaniline-Based Nanocomposite Anode for Microbial Fuel Cells. In: Oves, M., Zain Khan, M., M.I. Ismail, I. (eds) Modern Age Environmental Problems and their Remediation. Springer, Cham. https://doi.org/10.1007/978-3-319-64501-8_11

Download citation

Publish with us

Policies and ethics