Skip to main content
Log in

A fed-batch strategy to produce high poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) terpolymer yield with enhanced mechanical properties in bioreactor

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study reports an efficient fed-batch strategy to improve poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-3HV-co-4HB)] terpolymer production by Cupriavidus sp. USMAA2-4 with enhanced mechanical properties in bioreactor. The cultivations have been performed by combining oleic acid with γ-butyrolactone at different concentration ratios with 1-pentanol at a fixed concentration. The batch and fed-batch fermentations have resulted in P(3HB-co-3HV-co-4HB) with compositions of 9–35 mol% 3HV and 4–24 mol% 4HB monomers. The DO-stat fed-batch fermentation strategies have significantly improved the production with a maximum 4.4-fold increment of cell dry weight (CDW). Besides, appropriate feeding of the substrates has resulted in an increment of terpolymer productivity from 0.086–0.347 g/L/h, with a significantly shortened cultivation time. The bacterial growth and terpolymer formation have been found to be affected by the concentration of carbon sources supplied. Characterization of P(3HB-co-3HV-co-4HB) has demonstrated that incorporation of 3HV and 4HB monomer has significantly improved the physical and thermodynamic properties of the polymers, by reducing the polymer’s crystallinity. The tensile strength, Young’s modulus of the terpolymer has been discovered to increase with the increase of M w. The fed-batch fermentation strategies employed in this study have resulted in terpolymers with a range of flexible materials having improved tensile strength and Young’s modulus as compared to the terpolymer produced from batch fermentation. Possession of lower melting temperature indicates an enhanced thermal stability which broadens the polymer processing window.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sudesh K, Iwata T (2008) Sustainability of biobased and biodegradable plastics. Clean 35:433–442

    Google Scholar 

  2. Ojumu TV, Yu J, Solomon BO (2004) Production of polyhydroxyalkanoates, a bacterial biodegradable polymer. Afr J Biotechnol 3:18–24

    Article  CAS  Google Scholar 

  3. Braunegg G, Lefebvre G, Genser KF (1998) Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J Biotechnol 65:127–161

    Article  CAS  Google Scholar 

  4. Ramadas NV, Singh SK, Soccol CR, Pandey (2009) A Polyhydroxybutyrate production using agro-industrial residue as substrate by Bacillus sphaericus NCIM 5149. Braz Arch Biol Technol 52:17–23

    Article  CAS  Google Scholar 

  5. Mumtaz T, Yahaya NA, Aziz SA, Rahman NAA, Yee PL, Shirai Y, Hassan MA (2010) Turning waste to wealth-biodegradable plastics polyhydroxyalkanoates from palm oil mill effluent—a Malaysian perspective. J Clean Prod 18:1393–1402

    Article  CAS  Google Scholar 

  6. Khanna S, Srivastava AK (2005) A simple structured mathematical model for biopolymer (PHB) production. Biotechnol Progr 21:830–838

    Article  CAS  Google Scholar 

  7. Huang TY, Duan KJ, Huang SY, Chen CW (2006) Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J Ind Microbiol Biotechnol 33:701–706

    Article  CAS  Google Scholar 

  8. Lee Y, Lee SH, Lee SY (1999) Fed-batch culture of Aeromonas hydrophila for the production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) using two carbon sources. Biotechnol Bioproc E 4:195–198

    Article  CAS  Google Scholar 

  9. Yamane T, Chen XF, Ueda S (1996) Growth-associated production of Poly(3-hydroxyvalerate) from n-pentanol by methylotrophic bacterium, Paracoccus denitrificans. Appl Environ Microb 62:380–384

    CAS  Google Scholar 

  10. Steinbűchel A, Fűchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16:419–427

    Article  Google Scholar 

  11. Amirul AA, Yahya ARM, Sudesh K, Azizan MNM, Majid MIA (2008) Biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer by Cupriavidus sp. USMAA1020 isolated from Lake Kulim, Malaysia. Bioresour Technol 99:4903–4909

    Article  CAS  Google Scholar 

  12. Chung A, Liu Q, Ouyang SP, Wu Q, Chen GQ (2009) Microbial production of 3-hydroxydodecanoic acid by pha operon and fadBA knockout mutant of Pseudomonas putida KT2442 harboring tesB gene. Appl Microbiol Biotechnol 83:513–519

    Article  CAS  Google Scholar 

  13. Fukui T, Suzuki M, Tsuge T, Nakamura S (2009) Microbial synthesis of poly((R)-3-hydroxybutyrate-co-3-hydroxypropionate) from unrelated carbon sources by engineered Cupriavidus necator. Biomacromol 10:700–706

    Article  CAS  Google Scholar 

  14. Faezah AN, Rahayu A, Vigneswari S, Majid MIA, Amirul AA (2011) Regulating the molar fraction of 4-hydroxybutyrate in poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by biological fermentation and enzymatic degradation. World J Microb Biotechnol 27:2455–2459

    Article  CAS  Google Scholar 

  15. William SF, Martin DP (2002) Applications of PHAs in medicine and pharmacy. Wiley-VCH Verlag GmbH, Germany

    Google Scholar 

  16. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555

    Article  CAS  Google Scholar 

  17. Choi J-I, Lee SY (1999) High level production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by fed-batch culture of recombinant Escherichia coli. Appl Environ Microbiol 65:4363–4368

    CAS  Google Scholar 

  18. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    CAS  Google Scholar 

  19. Shantini K, Yahya ARM, Amirul AA (2012) Empirical modeling development for integrated process optimization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production. J Appl Polym Sci 125:2155–2162

    Article  CAS  Google Scholar 

  20. Shantini K, Yahya ARM, Amirul AA (2015) Influence of feeding and controlled dissolved oxygen level on production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus sp. USMAA2-4 and its characterization. Appl Biochem Biotechnol 176:1315–1334

    Article  CAS  Google Scholar 

  21. Huong K-H, Shantini K, Sharmini R, Amirul AA (2017) Exploring the potential of 1-pentanol and oleic acid for optimizing the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer by Cupriavidus sp. USMAA1020. Arabian J Sci Eng 42:2313–2320

    Article  CAS  Google Scholar 

  22. Amirul AA, Yahya ARM, Sudesh K, Azizan MNM, Majid MI (2008) Biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer by Cupriavidus sp. USMAA1020 isolated from Lake Kulim, Malaysia. Bioresour Technol 99:4903–4909

    Article  CAS  Google Scholar 

  23. Choi J, Lee SY (1999) Factors affecting the economics of polyhydroxyalkanoates production by bacterial fermentation. Appl Microbiol Biotechnol 51:13–21

    Article  CAS  Google Scholar 

  24. Fahima Azira TM, Nursolehah AA, Norhayati Y, Majid MIA, Amirul AA (2011) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) terpolymer by Cupriavidus sp. USMAA2-4 through two-step cultivation process. World J Microbiol Biotechnol 27:2287–2295

    Article  CAS  Google Scholar 

  25. Rahayu A, Zaleha Z, Yahya ARM, Majid MIA, Amirul AA (2008) Production of copolymer poly(3-hydroxybutyrate-co-4-hydroxybutyrate) through a one-step cultivation process. World J Microbiol Biotechnol 24:2403–2409

    Article  CAS  Google Scholar 

  26. Huong KH, Yahya ARM, Amirul AA (2014) Pronounced synergistic influence of mixed-substrate cultivation on single-step copolymer P(3HB-co-4HB) biosynthesis with a wide range of 4HB monomer composition. J Chem Technol Biotechnol 89:1023–1029

    Article  CAS  Google Scholar 

  27. Huong KH, Kannusamy S, Lim SYH, Amirul AA (2015) Biosynthetic enhancement of single-stage poly(3-hydroxybutyrate-co-4-hydroxybutyrate) production by manipulating the substrate mixtures. J Ind Microbial Biotechnol 42:1291–1297

    Article  CAS  Google Scholar 

  28. Nursolehah AA, Sipaut CS, Amirul AA (2012) Improvement of the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) terpolyester by manipulating the culture condition. J Chem Technol Biotechnol 87:1607–1614

    Article  Google Scholar 

  29. Amirul AA, Syairah SN, Yahya ARM, Azizan MN, Majid MIA (2008) Synthesis of biodegradable polyesters by Gram negative bacterium isolated from Malaysian environment. World J Microb Biotechnol 24:1327–1332

    Article  CAS  Google Scholar 

  30. Braunegg G, Sonnleitner B, Lafferty RM (1978) A rapid gas chromatography method for determination of the poly-β-hydroxybutyric acid biomass. Eur J Appl Microbiol Biotechnol 6:29–37

    Article  CAS  Google Scholar 

  31. Loo CY, Lee WH, Tsuge T, Doi Y, Sudesh K (2005) Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from palm oil products in a Wautersia eutropha mutant. Biotechnol Lett 27:1405–1410

    Article  CAS  Google Scholar 

  32. Shantini K, Bhubalan K, Yahya ARM, Amirul AA (2013) Productivity increment of biodegradable and biorenewable copolymer containing 3-hydroxyvalerate monomer initiated by alcohols as precursor substrates. J Chem Technol Biotechnol 88:1364–1370

    Article  CAS  Google Scholar 

  33. Verlinden RAJ, Hill DJ, Kenward MA, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102:1437–1449

    Article  CAS  Google Scholar 

  34. Huong KH, The CH, Abdullah, AAA (2017) Microbial-based synthesis of highly elastomeric biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) thermoplastic. Int J bio Macromol 101:983–995

    Article  CAS  Google Scholar 

  35. Madden LA, Anderson AJ, Asrar J, Berger P, Garrett P (2000) Production and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) synthesized by Ralstonia eutropha in fed-batch cultures. Polym 41:3499–3505

    Article  CAS  Google Scholar 

  36. Tsuge T (2016) Fundamental factors determining the molecular weight of polyhydroxyalkanoates during biosynthesis. Polym J 48:1051–1057

    Article  CAS  Google Scholar 

  37. Madden LA, Anderson AJ, Shah DJ, Asrar J (1999) Chain termination in polyhydroxyalkanoates synthesis: involvement of exogenous hydroxy-compounds as chain transfer agents. Int J bio Macromol 25:43–53

    Article  CAS  Google Scholar 

  38. Department of Chemical Engineering, Lund University, Sweden (2010) Influence of operating conditions on fed-batch production of polyhydroxyalkanoates in a mixed culture. http://www.chemeng.lth.se/exjobb/E508.pdf. Accessed 15 July 2017

  39. Serafim LS, Lemos PC, Torres C, Reis MAM, Ramos AM (2008) The influence of process parameters on the characteristics of polyhydroxyalkanoates produced by mixed cultures. Macromol Biosci 8:355–366

    Article  CAS  Google Scholar 

  40. Noda I, Green PR, Satkowski MM, Schechtman LA (2005) Preparation and properties of a novel class of polyhydroxyalkanoate copolymers. Biomacromol 6:580–586

    Article  CAS  Google Scholar 

  41. Yoshie N, Saito M, Inoue Y (2001) Structural transition of lamella crystals in a isomorphous copolymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Macromol 34:8953–8960

    Article  CAS  Google Scholar 

  42. Koller M, Hesse P, Bona R, Kutschera C, Atlic A, Braunegg G (2007) Biosynthesis of high quality polyhydroxyalkanoate co- and terpolyester for potential medical application by the archaeon Haloferax mediterranei. Macromol Symp 253:33–39

    Article  CAS  Google Scholar 

  43. Jadhav NR, Gaikwad VL, Nair KJ, Kadam HM (2009) Glass transition temperature: basics and application in pharmaceutical sector. Asian J Pharma 3:82–89

    Article  Google Scholar 

  44. Nakamura S, Doi Y, Scandoila M (1992) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromol 25:4237–4241

    Article  CAS  Google Scholar 

  45. Kang CK, Kusaka S, Doi Y (1995) Structure and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) produced by Alcaligenes latus. Biotechnol Lett 15:583–588

    Article  Google Scholar 

  46. Chai HL, Yahya ARM, Majid MIA, Amirul AA (2009) Microbial synthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer by Cupriavidus sp. USMAA2-4 through a two-step cultivation process. African J Biotechnol 8:4189–4196

    CAS  Google Scholar 

  47. Huong KH, Azuraini MJ, Aziz NA, Amirul AA (2017) Pilot scale production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) biopolymers with high molecular weight and elastomeric properties. J Biosci Bioeng 124:76–83

    Article  CAS  Google Scholar 

  48. Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8:2–14

    Article  Google Scholar 

  49. Chanprateep S, Buasri K, Muangwong A, Utiswannakul P (2010) Biosynthesis and biocompatibility of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym Degrad Stab 95:2003–2012

    Article  CAS  Google Scholar 

  50. Hablot E, Bordes P, Pollet E, AvéRous L (2008) Thermal and thermo-mechanical degradation of poly(3-hydroxybutyrate)-based multiphase systems. Polym Degrad Stab 93:413–421

    Article  CAS  Google Scholar 

  51. Chanprateep S, Kulpreecha S (2006) Production and characterization of biodegradable terpolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) by Alcaligenes sp. A-04. J Biosci Bioeng 101:51–56

    Article  CAS  Google Scholar 

  52. Martin DP, Williams SF (2003) Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochem Eng J 16:97–105

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the research grant (Science Fund, 02-01-05-SF0363) provided by Ministry of Science, Technology and Innovation Malaysia (MOSTI) that has supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Amirul.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, N.A., Huong, KH., Sipaut, C.S. et al. A fed-batch strategy to produce high poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) terpolymer yield with enhanced mechanical properties in bioreactor. Bioprocess Biosyst Eng 40, 1643–1656 (2017). https://doi.org/10.1007/s00449-017-1820-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1820-0

Keywords

Navigation