Skip to main content
Log in

Cellotriose-hydrolyzing activity conferred by truncating the carbohydrate-binding modules of Cel5 from Hahella chejuensis

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Processivity is a typical characteristic of cellobiohydrolases (CBHs); it enables the enzyme to successively hydrolyze the ends of cellulose chains and to produce cellobiose as the major product. Some microbes, which do not have CBHs, utilize endoglucanases (EGs) that exhibit processivity, commonly referred to as processive EGs. A processive EG identified from Hahella chejuensis, HcCel5, has a catalytic domain (CD) belonging to the glycoside hydrolase family 5 (GH5) and two carbohydrate-binding modules (CBM6s). In this study, we compared HcCel5-CD with the CD of Saccharophagus degradans Cel5H (SdCel5H-CD), which is a processive EG reported previously. Our results showed that in comparison to SdCel5H-CD, HcCel5-CD has more suitable characteristics for cellulose hydrolysis, such as higher hydrolytic activity, thermostability (40–80 °C), and processivity. Noticeably, HcCel5-CD is capable of hydrolyzing cellotriose, unlike HcCel5. These features of HcCel5-CD for cellulose hydrolysis could be employed for efficient saccharification of lignocellulose to produce cellobiose and glucose, which may be used to produce renewable fuels and chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lynd LR, Laser MS, Brandsby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172

    Article  CAS  Google Scholar 

  2. Jalak J, Kurašin M, Teugjas H, Väljamäe P (2012) Endo-exo synergism in cellulose hydrolysis revisited. J Biol Chem 287:28802–28815

    Article  CAS  Google Scholar 

  3. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  4. Kurašin M, Väljamäe P (2011) Processivity of cellobiohydrolases is limited by the substrate. J Biol Chem 286:169–177

    Article  Google Scholar 

  5. Wilson DB, Kostylev M (2012) Cellulase Processivity. In: Himmel ME (ed) Biomass conversion. Humana Press, New York, pp 93–99

    Chapter  Google Scholar 

  6. Eijsink VGH, Vaaje-Kolstad G, Vårum KM, Horn SJ (2008) Towards new enzymes for biofuels: lessons from chitinase research. Trends Biotechnol 26:228–235

    Article  CAS  Google Scholar 

  7. Horn SJ, Sikorski P, Cederkvist JB, Vaaje-Kolstad G, Sørlie M, Synstad B, Vriend G, Vårum KM, Eijsink VGH (2006) Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides. Proc Natl Acad Sci USA 103:18089–18094

    Article  CAS  Google Scholar 

  8. Cohen R, Suzuki MR, Hammel KE (2005) Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 71:2412–2417

    Article  CAS  Google Scholar 

  9. Ghatge S, Telke A, Kang S-H, Arulalapperumal V, Lee K-W, Govindwar S, Um Y, Oh D-B, Shin H-D, Kim S-W (2014) Characterization of modular bifunctional processive endoglucanase Cel5 from Hahella chejuensis KCTC 2396. Appl Microbiol Biotechnol 98:4421–4435

    Article  CAS  Google Scholar 

  10. Li Y, Irwin DC, Wilson DB (2007) Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A. Appl Environ Microbiol 73:3165–3172

    Article  CAS  Google Scholar 

  11. Watson BJ, Zhang H, Longmire AG, Moon YH, Hutcheson SW (2009) Processive endoglucanases mediate degradation of cellulose by Saccharophagus degradans. J Bacteriol 191:5697–5705

    Article  CAS  Google Scholar 

  12. Zheng F, Ding S (2013) Processivity and enzymatic mode of a glycoside hydrolase family 5 endoglucanase from Volvariella volvacea. Appl Environ Microbiol 79:989–996

    Article  CAS  Google Scholar 

  13. Jeon SD, Yu KO, Kim SW, Han SO (2012) The processive endoglucanase EngZ is active in crystalline cellulose degradation as a cellulosomal subunit of Clostridium cellulovorans. New Biotechnol 29:365–371

    Article  CAS  Google Scholar 

  14. Kim KH, Choi IG, Lee HJ (2016) Novel recombinant cellulase and use thereof. Korea Patent 10-1646741

  15. Kim KH, Choi IG, Lee HJ, Kim IJ (2014) Novel recombinant cellulase and use thereof. EU Patent filed 14 788 468.8

  16. Kim KH, Choi IG, Lee HJ, Kim IJ (2014) Novel recombinant cellulase and use thereof. US Patent filed 14/786,711

  17. Dyrløv Bendtsen J, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: signalP 3.0. J Mol Biol 340:783–795

    Article  Google Scholar 

  18. Kim IJ, Jung JY, Lee HJ, Park HS, Jung YH, Park K, Kim KH (2015) Customized optimization of cellulase mixtures for differently pretreated rice straw. Bioprocess Biosyst Eng 38:929–937

    Article  CAS  Google Scholar 

  19. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  20. Irwin DC, Spezio M, Walker LP, Wilson DB (1993) Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects. Biotechnol Bioeng 42:1002–1013

    Article  CAS  Google Scholar 

  21. Doner LW, Irwin PL (1992) Assay of reducing end-groups in oligosaccharide homologues with 2,2′-bicinchoninate. Anal Biochem 202:50–53

    Article  CAS  Google Scholar 

  22. Chapon V, Czjzek M, El Hassouni M, Py B, Juy M, Barras F (2001) Type II protein secretion in gram-negative pathogenic bacteria: the study of the structure/secretion relationships of the cellulase Cel5 (formerly EGZ) from Erwinia chrysanthemi. J Mol Biol 310:1055–1066

    Article  CAS  Google Scholar 

  23. Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T (2008) Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc 4:1–13

    Article  Google Scholar 

  24. Holm L, Rosenström P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38:W545–W549

    Article  CAS  Google Scholar 

  25. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D 60:2126–2132

    Article  Google Scholar 

  26. Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66:12–21

    Article  CAS  Google Scholar 

  27. Bianchetti CM, Brumm P, Smith RW, Dyer K, Hura GL, Rutkoski TJ, Phillips GN Jr (2013) Structure, dynamics, and specificity of endoglucanase D from Clostridium cellulovorans. J Mol Biol 425:4267–4285

    Article  CAS  Google Scholar 

  28. Barras F, Bortoli-German I, Bauzan M, Rouvier J, Gey C, Heyraud A, Henrissat B (1992) Stereochemistry of the hydrolysis reaction catalyzed by endoglucanase Z from Erwinia chrysanthemi. FEBS Lett 300:145–148

    Article  CAS  Google Scholar 

  29. Payne CM, Resch MG, Chen L, Crowley MF, Himmel ME, Taylor LE, Sandgren M, Ståhlberg J, Stals I, Tan Z, Beckham GT (2013) Glycosylated linkers in multimodular lignocellulose-degrading enzymes dynamically bind to cellulose. Proc Nati Acad Sci USA 110:14646–14651

    Article  CAS  Google Scholar 

  30. Sammond DW, Payne CM, Brunecky R, Himmel ME, Crowley MF, Beckham GT (2012) Cellulase linkers are optimized based on domain type and function: insights from sequence analysis, biophysical measurements, and molecular simulation. PLoS One 7(11):e48615

    Article  CAS  Google Scholar 

  31. Várnai A, Siika-aho M, Viikari L (2013) Carbohydrate-binding modules (CBMs) revisited: reduced amount of water counterbalances the need for CBMs. Biotechnol Biofuels 6:30

    Article  Google Scholar 

  32. Pakarinen A, Haven M, Djajadi D, Várnai A, Puranen T, Viikari L (2014) Cellulases without carbohydrate-binding modules in high consistency ethanol production process. Biotechnol Biofuels 7:27

    Article  Google Scholar 

  33. Burstein T, Shulman M, Jindou S, Petkun S, Frolow F, Shoham Y, Bayer EA, Lamed R (2009) Physical association of the catalytic and helper modules of a family-9 glycoside hydrolase is essential for activity. FEBS Lett 583:879–884

    Article  CAS  Google Scholar 

  34. Irwin D, Shin D-H, Zhang S, Barr BK, Sakon J, Karplus PA, Wilson DB (1998) Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J Bacteriol 180:1709–1714

    CAS  Google Scholar 

  35. Zhang C, Wang Y, Li Z, Zhou X, Zhang W, Zhao Y, Lu X (2014) Characterization of a multi-function processive endoglucanase CHU_2103 from Cytophaga hutchinsonii. Appl Microbiol Biotechnol 98:6679–6687

    Article  CAS  Google Scholar 

  36. Gilbert HJ, Knox JP, Boraston AB (2013) Advances in understanding the molecular basis of plant cell wall polysaccharide recognition by carbohydrate-binding modules. Curr Opin Struct Biol 23:669–677

    Article  CAS  Google Scholar 

  37. Ha S-J, Galazka JM, Kim SR, Choi J-H, Yang X, Seo J-H, Louise Glass N, Cate JHD, Jin Y-S (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci USA 108:504–509

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Research Foundation of Korea (2013M1A2A2072597). IJK acknowledges grant support from Korea University. This study was performed at the Korea University Food Safety Hall for the Institute of Biomedical Science and Food Safety.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Heon Kim.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

H. J. Lee and I. J. Kim both equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2406 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.J., Kim, I.J., Youn, H.J. et al. Cellotriose-hydrolyzing activity conferred by truncating the carbohydrate-binding modules of Cel5 from Hahella chejuensis . Bioprocess Biosyst Eng 40, 241–249 (2017). https://doi.org/10.1007/s00449-016-1692-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1692-8

Keywords

Navigation