Skip to main content

Advertisement

Log in

Improvement of radio frequency (RF) heating-assisted alkaline pretreatment on four categories of lignocellulosic biomass

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Pretreatment plays an important role in making the cellulose accessible for enzyme hydrolysis and subsequent conversion because it destroys more or less resistance and recalcitrance of biomass. Radio frequency (RF)-assisted dielectric heating was utilized in the alkaline pretreatment on agricultural residues (corn stover), herbaceous crops (switchgrass), hardwood (sweetgum) and softwood (loblolly pine). Pretreatment was performed at 90 °C with either RF or traditional water bath (WB) heating for 1 h after overnight soaking in NaOH solution (0.2 g NaOH/g Biomass). Pretreated materials were characterized by chemical compositional analysis, enzyme hydrolysis, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The glucan yields of RF-heated four categories of hydrolysates were 89.6, 72.6, 21.7, and 9.9 %. Interestingly, RF heating raised glucan yield on switchgrass and sweetgum but not on corn stover or loblolly pine. The SEM images and FTIR spectra agreed with results of composition analysis and hydrolysis. GC–MS detected some compounds only from RF-heated switchgrass. These compounds were found by other researchers only in high-temperature (150–600 °C) and high-pressure pyrolysis processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  Google Scholar 

  2. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966. doi:10.1016/j.biortech.2005.01.010

    Article  CAS  Google Scholar 

  3. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729. doi:10.1021/ie801542g

    Article  CAS  Google Scholar 

  4. Zhu JY, Pan X, Zalesny RS (2010) Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Appl Microbiol Biotechnol 87:847–857. doi:10.1007/s00253-010-2654-8

    Article  CAS  Google Scholar 

  5. Liu S, McDonald T, Wang Y (2010) Producing biodiesel from high free fatty acids waste cooking oil assisted by radio frequency heating. Fuel 89:2735–2740. doi:10.1016/j.fuel.2010.03.011

    Article  CAS  Google Scholar 

  6. Hu Z, Wang Y, Wen Z (2008) Alkali (NaOH) pretreatment of switchgrass by radio frequency-based dielectric heating. Appl Biochem Biotechnol 148:71–81. doi:10.1007/s12010-007-8083-1

    Article  CAS  Google Scholar 

  7. Wang Y, Wig TD, Tang J, Hallberg LM (2003) Dielectric properties of foods relevant to RF and microwave pasteurization and sterilization. J Food Eng 57:257–268. doi:10.1016/S0260-8774(02)00306-0

    Article  Google Scholar 

  8. Zhu S, Wu Y, Yu Z, Chen Q, Wu G, Yu F et al (2006) Microwave-assisted alkali pre-treatment of wheat straw and its enzymatic hydrolysis. Biosyst Eng 94:437–442. doi:10.1016/j.biosystemseng.2006.04.002

    Article  Google Scholar 

  9. Iroba KL, Tabil LG, Dumonceaux T, Baik OD (2013) Effect of alkaline pretreatment on chemical composition of lignocellulosic biomass using radio frequency heating. Biosyst Eng 116:385–398. doi:10.1016/j.biosystemseng.2013.09.004

    Article  Google Scholar 

  10. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861. doi:10.1016/j.biortech.2009.11.093

    Article  CAS  Google Scholar 

  11. Modenbach A (2013) Sodium hydroxide pretreatment of corn stover and subsequent enzymatic hydrolysis: An investigation of yields, kinetic modeling and glucose recovery. Dissertation, University of Kentucky

  12. Cabrera E, Muñoz MJ, Martín R, Caro I, Curbelo C, Díaz AB (2014) Alkaline and alkaline peroxide pretreatments at mild temperature to enhance enzymatic hydrolysis of rice hulls and straw. Bioresour Technol 167:1–7. doi:10.1016/j.biortech.2014.05.103

    Article  CAS  Google Scholar 

  13. Marra F, Lyng J, Romano V, McKenna B (2007) Radio-frequency heating of foodstuff: solution and validation of a mathematical model. J Food Eng 79:998–1006. doi:10.1016/j.jfoodeng.2006.03.031

    Article  Google Scholar 

  14. Hu Z, Wen Z (2008) Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochem Eng J 38:369–378. doi:10.1016/j.bej.2007.08.001

    Article  CAS  Google Scholar 

  15. Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2:51–68. doi:10.3965/j.issn.1934-6344.2009.03.051-068

    CAS  Google Scholar 

  16. Chen Y (2013) Stevens Ma, Zhu Y, Holmes J, Xu H. Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnol Biofuels 6:8. doi:10.1186/1754-6834-6-8

    Article  CAS  Google Scholar 

  17. Cheng G, Varanasi P, Li C, Liu H, Melnichenko YB, Simmons BA et al (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules 12:933–41. doi:10.1021/bm101240z

  18. Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728. doi:10.1021/cr9001947

    Article  CAS  Google Scholar 

  19. Li Q, Gao Y, Wang H, Li B, Liu C, Yu G et al (2012) Comparison of different alkali-based pretreatments of corn stover for improving enzymatic saccharification. Bioresour Technol 125:193–199. doi:10.1016/j.biortech.2012.08.095

    Article  CAS  Google Scholar 

  20. Kim TH, Kim JS, Sunwoo C, Lee Y (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90:39–47. doi:10.1016/S0960-8524(03)00097-X

    Article  CAS  Google Scholar 

  21. Via BK, Adhikari S, Taylor S (2013) Bioresource Technology Modeling for proximate analysis and heating value of torrefied biomass with vibration spectroscopy. Bioresour Technol 133:1–8. doi:10.1016/j.biortech.2013.01.108

    Article  CAS  Google Scholar 

  22. Chundawat SPS, Venkatesh B, Dale BE (2007) Effect of Particle Size Based Separation of Milled Corn Stover on AFEX Pretreatment and Enzymatic Digestibility. Biotechnol Bioeng 96:219–231. doi:10.1002/bit

    Article  CAS  Google Scholar 

  23. Sun XF, Xu F, Sun RC, Fowler P, Baird MS (2005) Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydr Res 340:97–106. doi:10.1016/j.carres.2004.10.022

    Article  CAS  Google Scholar 

  24. Singh S, Simmons BA, Vogel KP (2009) Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnol Bioeng 104:68–75. doi:10.1002/bit.22386

  25. Kumar R, Mago G, Balan V, Wyman CE (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol 100:3948–3962. doi:10.1016/j.biortech.2009.01.075

    Article  CAS  Google Scholar 

  26. Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101:4992–5002. doi:10.1016/j.biortech.2009.11.007

    Article  CAS  Google Scholar 

  27. Mullen CA, Boateng AA (2008) Chemical composition of bio-oils produced by fast pyrolysis of two energy crops. Energy and Fuels 22:2104–9. doi:10.1021/ef700776w

  28. De Wild P, Reith H, Heeres E (2011) Biomass pyrolysis for chemicals. vol. 2. doi:10.4155/bfs.10.88

  29. Fivga A (2012) Comparison of the effect of pre-treatment and catalysts on liquid quality from fast pyrolysis of biomass. Dissertation, Aston University

  30. Tumuluru JS, Sokhansanj S, Wright CT, Kremer T (2012) GC Analysis of volatiles and other products from biomass torrefaction process. In: Mohd MA (ed) Advanced gas chromatography–progress in agricultural, biomedical and industrial applications. InTech. doi:10.5772/33488

  31. Fang Z, Smith Jr RL, Qi X (2014) Production of biofuels and chemicals with microwave. vol. 3. Springer

  32. Klinke HB, Ahring BK, Schmidt AS, Thomsen AB (2002) Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresour Technol 82:15–26. doi:10.1016/S0960-8524(01)00152-3

    Article  CAS  Google Scholar 

  33. De la Hoz A, Díaz-Ortiz A, Moreno A (2005) Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34:164–178. doi:10.1039/b411438h

    Article  Google Scholar 

  34. Zhang Z, Zhao ZK (2009) Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid. Carbohydr Res 344:2069–2072. doi:10.1016/j.carres.2009.07.011

    Article  CAS  Google Scholar 

  35. Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S et al (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325. doi:10.1039/b601395c

    Article  CAS  Google Scholar 

  36. Shibata C, Kashima T, Ohuchi K (1996) Nonthermal influence of microwave power on chemical reactions. Japanese J Appl Physics, Part 1 Regul Pap Short Notes Rev Pap 35:316–9. doi:10.1143/JJAP.35.316

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifen Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Taylor, S. & Wang, Y. Improvement of radio frequency (RF) heating-assisted alkaline pretreatment on four categories of lignocellulosic biomass. Bioprocess Biosyst Eng 39, 1539–1551 (2016). https://doi.org/10.1007/s00449-016-1629-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1629-2

Keywords

Navigation