Skip to main content
Log in

Acetic acid-catalyzed hydrothermal pretreatment of corn stover for the production of bioethanol at high-solids content

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Corn stover (CS) was hydrothermally pretreated using CH3COOH (0.3 %, v/v), and subsequently its ability to be utilized for conversion to ethanol at high-solids content was investigated. Pretreatment conditions were optimized employing a response surface methodology (RSM) with temperature and duration as independent variables. Pretreated CS underwent a liquefaction/saccharification step at a custom designed free-fall mixer at 50 °C for either 12 or 24 h using an enzyme loading of 9 mg/g dry matter (DM) at 24 % (w/w) DM. Simultaneous enzymatic saccharification and fermentation (SSF) of liquefacted corn stover resulted in high ethanol concentration (up to 36.8 g/L), with liquefaction duration having a negligible effect. The threshold of ethanol concentration of 4 % (w/w), which is required to reduce the cost of ethanol distillation, was surpassed by the addition of extra enzymes at the start up of SSF achieving this way ethanol titer of 41.5 g/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li X, Lu J, Zhao J, Qu Y (2014) Characteristics of corn stover pretreated with liquid hot water and fed-batch semi-simultaneous saccharification and fermentation for bioethanol production. PLoS One. doi:10.1371/journal.pone.0095455

    Google Scholar 

  2. Larsen J, Haven MØ, Thirup L (2012) Inbicon makes lignocellulosic ethanol a commercial reality. Biomass Bioenerg 46:36–45. doi:10.1016/j.biombioe.2012.03.033

    Article  CAS  Google Scholar 

  3. Saha BC, Yoshida T, Cotta M, Sonomoto K (2013) Hydrothermal pretreatment and enzymatic saccharification of corn stover for efficient ethanol production. Ind Crops Prod 44:367–372. doi:10.1016/j.indcrop.2012.11.025

    Article  CAS  Google Scholar 

  4. Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Bioresour 2:26–40. doi:10.1002/bbb.49

    Article  CAS  Google Scholar 

  5. Gullón P, Romaní A, Vila C et al (2012) Potential of hydrothermal treatments in lignocellulose biorefineries. Biofuels Bioprod Bioresour 6:219–232. doi:10.1002/bbb.339

    Article  Google Scholar 

  6. Wilkinson S, Smart KA, Cook DJ (2015) Optimising the (microwave) hydrothermal pretreatment of brewers spent grains for bioethanol production. J Fuels. doi:10.1155/2015/369283

    Google Scholar 

  7. Liu ZH, Qin L, Zhu JQ, Li BZ, Yuan YI (2014) Simultaneous saccharification and fermentation of steam-exploded corn stover at high glucan loading and high temperature. Biotechnol Biofuels 7:167. doi:10.1186/s13068-014-0167-x

    Article  Google Scholar 

  8. Papa G, Rodriguez S, George A, Schievano A, Orzi V, Sale KL, Singh S, Adani F, Simmons BA (2015) Comparison of different pretreatments for the production of bioethanol and biomethane from corn stover and switchgrass. Bioresour Technol 183:101–110. doi:10.1016/j.biortech.2015.01.121

    Article  CAS  Google Scholar 

  9. Bals BD, Gunawan C, Moore J, Teymouri F, Dale BE (2014) Enzymatic hydrolysis of pelletized AFEX™-treated corn stover at high solid loadings. Biotechnol Bioeng 111:264–271. doi:10.1002/bit.25022

    Article  CAS  Google Scholar 

  10. Avci A, Saha BC, Dien BS, Kennedy GJ, Cotta MA (2013) Response surface optimization of corn stover pretreatment using dilute phosphoric acid for enzymatic hydrolysis and ethanol production. Bioresour Technol 130:603–612. doi:10.1016/j.biortech.2012.12.104

    Article  CAS  Google Scholar 

  11. Varga E, Klinke HB, Réczey K, Thomsen AB (2004) High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnol Bioeng 88:567–574. doi:10.1002/bit.20222

    Article  CAS  Google Scholar 

  12. Zu S, Li WZ, Zhang M, Li Z, Wang Z, Jameel H, Chang HM (2014) Pretreatment of corn stover for sugar production using dilute hydrochloric acid followed by lime. Bioresour Technol 152:364–370. doi:10.1016/j.biortech.2013.11.034

    Article  CAS  Google Scholar 

  13. Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19:1109–1117. doi:10.1021/bp0340180

    Article  CAS  Google Scholar 

  14. Gerbens-Leenes PW, Hoekstraa Y, van der Meer T (2009) The water footprint of energy from biomass: a quantitative assessment and consequences of an increasing share of bio-energy in energy supply. Ecol Econ 68:1052–1060. doi:10.1016/j.ecolecon.2008.07.013

    Article  Google Scholar 

  15. Szijártó N, Horan E, Zhang J, Puranen T, Siika-aho M, Viikari L (2011) Thermostable endoglucanases in the liquefaction of hydrothermally pretreated wheat straw. Biotechnol Biofuels 4:2. doi:10.1186/1754-6834-4-2

    Article  Google Scholar 

  16. Matsakas L, Christakopoulos P (2013) Fermentation of liquefacted hydrothermally pretreated sweet sorghum bagasse to ethanol at high-solids content. Bioresour Technol 127:202–208. doi:10.1016/j.biortech.2012.09.107

    Article  CAS  Google Scholar 

  17. Paschos T, Xiros C, Christakopoulos P (2015) Simultaneous saccharification and fermentation by co-cultures of Fusarium oxysporum and Saccharomyces cerevisiae enhances ethanol production from liquefied wheat straw at high solid content. Ind Crops Prod 76:793–802. doi:10.1016/j.indcrop.2015.07.061

    Article  CAS  Google Scholar 

  18. Zhang J, Chu D, Huang J, Yu Z, Dai G, Bao J (2010) Simultaneous saccharification and ethanol fermentation at high corn stover solids loading in a helical stirring bioreactor. Biotechnol Bioeng 105:718–728. doi:10.1002/bit.22593

    CAS  Google Scholar 

  19. Jørgensen H, Vibe-Pedersen J, Larsen J, Felby C (2007) Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng 96:862–870. doi:10.1002/bit.21115

    Article  Google Scholar 

  20. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass. In: Laboratory analytical procedure (LAP), NREL/TP-510-42618

  21. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. doi:10.1021/ac60147a030

    Article  CAS  Google Scholar 

  22. Garrote G, Domínguez H, Parajó JC (1999) Hydrothermal processing of lignocellulosic materials. Holz als Roh Werkst 57:191–202. doi:10.1007/s001070050039

    Article  CAS  Google Scholar 

  23. Overend RP, Chornet E, Gascoigne JA (1987) Fractionation of lignocellulosics by steam-aqueous pretreatments (and discussion). Philos Trans R Soc A Math Phys Eng Sci 321:523–536. doi:10.1098/rsta.1987.0029

    Article  CAS  Google Scholar 

  24. Öhgren K, Bura R, Saddler J, Zacchi G (2007) Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour Technol 98:2503–2510. doi:10.1016/j.biortech.2006.09.003

    Article  Google Scholar 

  25. Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenerg 46:70–78. doi:10.1016/j.biombioe.2012.03.026

    Article  CAS  Google Scholar 

  26. Stickel JJ, Knutsen JS, Liberatore MW, Luu W, Bousfield DW, Klingenberg DJ, Scott CT, Root TW, Ehrhardt MR, Monz TO (2009) Rheology measurements of a biomass slurry: an inter-laboratory study. Rheol Acta 48:1005–1015. doi:10.1007/s00397-009-0382-8

    Article  CAS  Google Scholar 

  27. Avci A, Saha BC, Kennedy GJ, Cotta MA (2013) Dilute sulfuric acid pretreatment of corn stover for enzymatic hydrolysis and efficient ethanol production by recombinant Escherichia coli FBR5 without detoxification. Bioresour Technol 142:312–319. doi:10.1016/j.biortech.2013.05.002

    Article  CAS  Google Scholar 

  28. Xu J, Thomsen MH, Thomsen AB (2010) Investigation of acetic acid-catalyzed hydrothermal pretreatment on corn stover. Appl Microbiol Biotechnol 86:509–516. doi:10.1007/s00253-009-2340-x

    Article  CAS  Google Scholar 

  29. Zhao J, Xia L (2009) Simultaneous saccharification and fermentation of alkaline-pretreated corn stover to ethanol using a recombinant yeast strain. Fuel Process Technol 90:1193–1197. doi:10.1016/j.fuproc.2009.05.018

    Article  CAS  Google Scholar 

  30. Wan C, Li Y (2010) Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresour Technol 101:6398–6403. doi:10.1016/j.biortech.2010.03.070

    Article  CAS  Google Scholar 

  31. Lu Y, Wang Y, Xu G, Chu J, Zhuang Y, Zhang S (2010) Influence of high solid concentration on enzymatic hydrolysis and fermentation of steam-exploded corn stover biomass. Appl Biochem Biotechnol 160:360–369. doi:10.1007/s12010-008-8306-0

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of General Secretariat of Research and Technology (GSRT) of Greece-ESPA 2007–2013 (SYNERGASIA 2011; 11SYN_7_1579) is gratefully acknowledged. We are also grateful to Novozymes A/S for the generous gifts of Celluclast® 1.5 L, Novozyme® 188 and Cellic® CTec2, and to Lesaffre for the generous gift of Ethanol Red®.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Topakas.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest exists.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katsimpouras, C., Christakopoulos, P. & Topakas, E. Acetic acid-catalyzed hydrothermal pretreatment of corn stover for the production of bioethanol at high-solids content. Bioprocess Biosyst Eng 39, 1415–1423 (2016). https://doi.org/10.1007/s00449-016-1618-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1618-5

Keywords

Navigation