Skip to main content
Log in

Controlling the feed rate of propanol to optimize erythromycin fermentation by on-line capacitance and oxygen uptake rate measurement

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The aim of the present study was to optimize the feeding proportion of glucose and propanol for erythromycin biosynthesis by real-time monitoring and exploring its limited ratio by the on-line multi-frequency permittivity measurement. It was found that the capacitance values were sensitive to the variation of biomass concentration and microbial morphology as well as the true state of cell growth. It was most favorable to both cell growth and secondary metabolism to keep the ratio of glucose to propanol at 4.3 (g/g). The specific growth rate calculated by the capacitance measurement correctly and accurately reflected the cell physiological state. An appropriate feed rate of propanol was crucial for cell growth and secondary metabolism, as well as to improve the quality of erythromycin-A. In addition, the erythromycin production titer (10,950 U/mL) was further enhanced by 4 % when the propanol feed was regulated by step-down strategy based on both OUR (oxygen uptake rate) and the on-line monitoring capacitance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bao K, Zhang WG, Cheng MS (2009) Recent developments in erythromycin derivatives with new bioactivities. J Shenyang Pharm Univ 26(1):74–79

    CAS  Google Scholar 

  2. Mironov VA, Sergienko OV, Nastasyak IN, Danilenko VN (2004) Biogenesis and regulation of biosynthesis of erythromycins in Saccharopolysplra erythraea. Appl Biochem Microbiol 6:611–624

    Google Scholar 

  3. Sun Y, Zhou RQ, Wu Q (2005) Biochemistry and genetics of erythromycin biosynthesis. J Microbiol 25(2):45

    Google Scholar 

  4. Andrew R, Reeves Igor A, Brikun William H (2006) Effects of methylmalonyl-CoA mutase gene knockouts on erythromycin production in carbohydrate-based and oil-based fermentations of Saccharopolyspora erythraea. J Ind Microbiol Biotechnol 33(7):600–609

    Article  CAS  Google Scholar 

  5. Chen Y, Deng W, Wu JQ (2008) Genetic modulation of the over expression of tailoring genes eryK and eryG leading to the improvement of erythromycin A purity and production in Saccharopolyspora erythrae. Appl Environ Microbiol Ferment 74(6):1820–1828

    Article  CAS  Google Scholar 

  6. Shen ZB, Chen GH, Chen CH (2006) Study on effect of soybean oil on fermentation of erythromycin and its mechanism. Chin J Antibiot 31(11):657–660

    CAS  Google Scholar 

  7. Elmahdi I, Baganz F, Dixon K, Harropb T, Sµgden D, Lye GJ (2003) pH control in microwell fermentations of S. erythraea CA340 influence on biomass growth kinetics and erythromycin biosynthesis. Biochem Eng J 16:299–310

    Article  CAS  Google Scholar 

  8. Chen Y, Huang MZ, Wang ZJ, Chu J et al (2013) Controlling the feed rate of glucose and propanol for the enhancement of erythromycin production and exploration of propanol metabolism fate by quantitative metabolic flux analysis. Bioprocess Biosyst Eng 36(10):1445–1453

    Article  CAS  Google Scholar 

  9. Staunton J, Wilkinson B (1997) Biosynthesis of erythromycin and rapamycin. Chem Rev 7:2611–2630

    Article  Google Scholar 

  10. Chan YA, Podevels AM, Kevany BM, Thomas GM (2009) Biosynthesis of polyketide synthase extender units. Nat Prod Rep 1:90–114

    Article  Google Scholar 

  11. Bojanowsa KR, Ruczaj Z, Korszynka DS, Rafalski A (1973) Limiting reaction in activation of acyl units in biosynthesis of macrolide antibiotics. Antimicrob Agents CH 2:162–167

    Article  Google Scholar 

  12. Zhang YP, Liu M, Du CY, Shen JY, Cao ZA (2006) Effect of by-products on cell growth and biosynthesis of 1,3-propanediol by Klebsiella pneumoniae. Chin J Process Eng 6(5):804–808

    CAS  Google Scholar 

  13. Carvell JP, Dowd JE (2006) On-line measurements and control of viable cell density in cell culture manufacturing processes using radio-frequency impedance. Cyto Technol 50:35–48

    CAS  Google Scholar 

  14. Arnold SA, Gaenakoo R, Harvey LM et al (2002) Use of at-line and in situ near-infrared spectroscope to monitor biomass in an industrial fed-batch Escherichia coli process. Biotechnol Bioeng 80:405–413

    Article  CAS  Google Scholar 

  15. Soly A, Lecina M, Gamez X (2005) On-line monitoring of yeast cell growth by impedance spectroscopy. J Biotechnol 118:398–405

    Article  CAS  Google Scholar 

  16. Ferreira AP, Vieira LM, Cardoso JP et al (2005) Evaluation of a new annular capacitance probe for biomass monitoring in industrial pilot-scale fermentations. J Biotechnol 116:403–409

    Article  CAS  Google Scholar 

  17. Wang YJ, Fan Y (2000) Studies of on-line and in situ measuring method for biomass concentration. Prog Biochem Biophys 27(4):387–390

    Google Scholar 

  18. Kiviharju K, Salonen K, Moilanen U, Eerikainen T (2008) Biomass measurement online: the performance of in situ measurements and software sensors. Ind Microbiol Biotechnol 35:657–665

    Article  CAS  Google Scholar 

  19. Patel P, Bhat A, Markx G (2008) A comparative study of cell death using electrical capacitance measurements and dielectrophoresis. Enzyme Microb Technol 43:523–530

    Article  CAS  Google Scholar 

  20. Bryant D, Morris S, Leemans D, Fish S, Taylor S, Carvell J, Todd R, Logan D, Lee M, Garcia N, Ellis A, Gallagher J (2011) Modelling real-time simultaneous saccharification and fermentation of lignocellulosic biomass and organic acid accumulation using dielectric spectroscopy. Bioresour Technol 102:9675–9682

    Article  CAS  Google Scholar 

  21. Neves AA, Pereira DA, Vieira LM et al (2001) Real time monitoring biomass concentration in Streptomyces clavuligerus cultivations with industrial media using a capacitance probe. J Biotechnol 84:45–52

    Article  CAS  Google Scholar 

  22. Cannizaaro C, Gugerli R, Marison I et al (2003) On-line biomass monitoring of CHO perfusion culture with scanning dielectric spectroscopy. Biotechnol Bioeng 84:597–610

    Article  CAS  Google Scholar 

  23. Liu YW, Huang MZ, Zhou Y et al (2010) Study on online capacitance viable-cell mass monitoring in citric acid fermentation by Aspergillus niger in complex medium with corn dregs. Food Ferment Ind 36(12):1–5

    Google Scholar 

  24. Maskow T, Röllich A, Fetzer I, Ackermann JU, Harms H (2008) On-line monitoring of lipid accumulation in yeast using impedance spectroscopy. J Biotechnol 135:64–70

    Article  CAS  Google Scholar 

  25. Zou X, Hang HF, Chu J, Zhuang YP, Zhang SL (2009) Oxygen uptake rate optimization with nitrogen regulation for erythromycin production and scale-up from 50 L to 372 m3 scale. Bioresour Technol 3:1406–1412

    Article  CAS  Google Scholar 

  26. Liu F, Jin YR (1996) Determination of amino-nitrogen in chong cao Beijing oral liquid by formaldehyde titration. Acta Acad Med Zhejiang 7(1):15–18

    Google Scholar 

  27. Fan DD, Chen B, Shang LA, Shen LX, Li BZ et al (1999) The improvement of fermentation technical parameters for the erythrus-mycin formation. Chin J Biotechnol 15(1):104–108

    CAS  Google Scholar 

  28. Qi XC, Chen CF, Qian JC, Chu J et al (2009) Determination of the erythromycin components in fermentation broth by HPLC. Food Ferment Ind 7:151–155

    Google Scholar 

  29. Licona-Cassani C, Marcellin E, Quek LE, Jacob S, Nielsen LK (2012) Reconstruction of the Saccharopolyspora erythraea genome-scale model and its use for enhancing erythromycin production. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 102(3):493–502

    Article  CAS  Google Scholar 

  30. Steven MM, Michael EB (1996) Effect of hyphal micromorphology on bioreactor performance of antibiotic-producing Saccharopolyspora erythraea cultures. Microbiology 142:1783–1788

    Article  Google Scholar 

  31. Liu Y, Ye RF, Zheng L et al (2005) Effects of propanol, Cu2+ and niacinamide on biosythesis of erythromycin. J East China Univ Sci Technol 31(6):808–811

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a grant from National Natural Science Foundation of China(No. 21276081), the Major State Basic Research Development Program of China (973 Program, No. 2012CB721006), the National Scientific and Technological Major Special Project (Significant Creation of New drugs, No. 2011ZX09203-001-03), and Research Fund for the Doctoral Program of Higher Education of China (No. 20110074110015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Chu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Chu, J., Zhuang, Y. et al. Controlling the feed rate of propanol to optimize erythromycin fermentation by on-line capacitance and oxygen uptake rate measurement. Bioprocess Biosyst Eng 39, 255–265 (2016). https://doi.org/10.1007/s00449-015-1509-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1509-1

Keywords

Navigation