Skip to main content
Log in

Synthesis of vanillic acid using whole cell nitrilase of wild and mutant Gordonia terrae

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The resting cells of Gordonia terrae mutant E9 having enhanced nitrilase activity were used for biotransformation of 4-hydroxy-3-methoxybenzonitrile into vanillic acid. The maximum conversion was observed in 0.1 M phosphate buffer (pH 8.0), using 60 mM substrate and 0.75 mgDCW resting cells in 1 mL reaction at 40 °C. K m of the whole cell nitrilase of wild and mutant strains of G. terrae for this substrate were 20 and 16.6 mM, and V max were 0.19 and 0.95 \({\text{Umg}}_{{_{\text{DCW}} }}^{{^{ - 1} }}\), respectively. Fed batch reaction for transformation of 4-hydroxy-3-methoxybenzonitrile using whole cell nitrilase of wild G. terrae resulted in 2.36 g of vanillic acid in 5 h with a catalytic and volumetric productivity of 0.78 \({\text{gg}}_{\text{DCW}}^{ - 1} {\text{h}}^{ - 1}\) and 4.72 gL−1h−1, respectively. The whole cell nitrilase of G. terrae mutant E9 resulted in higher catalytic and volumetric productivity, i.e., 1.68 \({\text{gg}}_{\text{DCW}}^{ - 1} {\text{h}}^{ - 1}\) and 10 gL−1h−1. A total 5.04 g of vanillic acid with 99 % purity were accumulated in 100 mL of reaction after 5 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bhalla TC, Kumar V, Bhatia SK (2013) Hydroxy acids: production and applications. In: Singh RS, Pandey A, Larroche C (eds) Advances in industrial biotechnoloy. IK International Publishing House Pvt Ltd, India, pp 56–76

    Google Scholar 

  2. Rajagopal K, Agrawal SS (2011) p-Hydroxybenzoic acid and its esters in wash-off/leave-on cosmetic products by high performance thin layer chromatography. Int J Pharma Stud Res 1:100–105

    Google Scholar 

  3. Kornhauser A, Coelho SG, Hearing VJ (2010) Applications of hydroxy acids: classification, mechanisms and photoactivity. Clin Cos Invest Dermatol 3:135–142

    Article  CAS  Google Scholar 

  4. Gitzinger M, Kemmer C, Fluri DA, El-Baba MD, Weber W, Fussenegger M (2011) The food additive vanillic acid controls transgene expression in mammalian cells and mice. Nucleic Acids Res 40(5):2–15

    Google Scholar 

  5. Gioia DD, Luziatelli F, Negronib A, Ficcaa AG, Favab F, Ruzzia M (2012) Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid. J Biotechnol 156:309–316

    Article  CAS  Google Scholar 

  6. Walton NJ, Mayer MJ, Narbad A (2003) Vanillin. Phytochem 63:505–515

    Article  CAS  Google Scholar 

  7. Sadraei H, Ghanadian M, Asghari G, Azali N (2014) Antidiarrheal activities of isovanillin, iso-acetovanillon and Pycnocycla spinosa Decne ex.Boiss extract in mice. Res Pharma Sci 9:83–89

    CAS  Google Scholar 

  8. Odoux E (2010) Vanilla curing. In: Odoux E, Grisoni M (eds) Vanilla (medicinal and aromatic plants—industrial profiles). CRC Press, New York, pp 173–188

    Google Scholar 

  9. Li K, Frost JW (1998) Synthesis of vanillin from glucose. J Am Chem Soc 120:10545–10546

    Article  CAS  Google Scholar 

  10. Rao SR, Ravishankar GA (2000) Vanilla flavour: production by conventional and biotechnological routes. J Sci Food Agric 80:289–304

    Article  CAS  Google Scholar 

  11. Adilina IB, Hara T, Ichikuni N, Shimazu S (2012) Oxidative cleavage of isoeugenol to vanillin under molecular oxygen catalysed by cobalt porphyrin intercalated into lithium taeniolite clay. J Mol Catal A Chem 361–362:72–79

    Article  CAS  Google Scholar 

  12. Havkin-Frenkel D, Belanger FC (2008) Biotechnological production of vanil. In: Havkin-Frenkel D, Belanger FC (eds) Biotechnology in flavor production. Wiley-Blackwell, Oxford, pp 83–103

    Chapter  Google Scholar 

  13. Hansen EH, Moller BL, Kock GR, Bunner CM, Kristensen C, Jensen OR, Okkels FT, Olsen CE, Motawia MS, Hansen J (2009) De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker’s yeast (Saccharomyces cerevisiae). Appl Environ Microbiol 75:2765–2774

    Article  CAS  Google Scholar 

  14. Gong JS, Lu ZM, Li H, Shi JS, Zhou ZM, Xu ZH (2012) Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Fact 11(1):142

    Article  CAS  Google Scholar 

  15. Kumar V, Bhalla TC (2013) Transformation of p-hydroxybenzonitrile to p-hydroxybenzoic acid using nitrilase activity of Gordonia terrae. Biocatal Biotransform 31(1):42–48

    Article  CAS  Google Scholar 

  16. Civolani C, Barghini P, Roncetti AR, Ruzzi M, Schiesser A (2000) Bioconversion of ferulic acid into vanillic acid by means of a vanillate-negative mutant of Pseudomonas fluorescens strain BF13. Appl Environ Microbiol 66:2311–2317

    Article  CAS  Google Scholar 

  17. Thuku RN, Brady D, Benedik MJ, Sewell BT (2009) Microbial nitrilases: versatile, spiral forming, industrial enzymes. J Appl Microbiol 106(3):703–727

    Article  CAS  Google Scholar 

  18. Hua D, Ma C, Lin S, Song L, Denga Z, Maomy Z, Zhang Z, Yu B, Xua P (2007) Biotransformation of isoeugenol to vanillin by a newly isolated Bacillus pumilus strain: identification of major metabolites. J Biotechnol 130:463–470

    Article  CAS  Google Scholar 

  19. Muheim A, Lerch K (1999) Towards a high-yield bioconversion of ferulic acid to vanillin. Appl Microbiol Biotechnol 51:456–461

    Article  CAS  Google Scholar 

  20. Kumar V, Kumar V, Thakur N, Bhalla TC (2015) Bench scale synthesis of p-hydroxybenzoic acid using whole cells nitrilase of Gordonia terrae mutant E9. Bioprocess Biosyst Eng 38(7):1267–1279

    Article  CAS  Google Scholar 

  21. Fawcett JK, Scott JE (1960) A rapid and precise method for the determination of urea. J Clin Pathol 13:156–159

    Article  CAS  Google Scholar 

  22. O’Reilly C, Turner PD (2003) The nitrilase family of CN hydrolysing enzymes a comparative study. J Appl Microbiol 95(6):1161–1174

    Article  CAS  Google Scholar 

  23. Prasad S, Misra A, Jangir VP, Awasthi A, Raj J, Bhalla TC (2006) A propionitrile-induced nitrilase of Rhodococcus sp. NDB 1165 and its application in nicotinic acid synthesis. World J Microbiol Biotechnol 23:345–353

    Article  CAS  Google Scholar 

  24. Sharma NN, Monica S, Bhalla TC (2011) An improved nitrilase-mediated bioprocess for synthesis of nicotinic acid from 3-cyanopyridine with hyperinduced Nocardia globerula NHB-2. J Ind Microbiol Biotechnol 38(9):1235–1243

    Article  CAS  Google Scholar 

  25. Bhatia SK, Mehta PK, Bhatia RK, Bhalla TC (2013) An isobutyronitrile induced bienzymatic system of Alcaligenes sp. MTCC 10674 for the production of α-hydroxyisobutyric acid. Bioprocess Biosyst Eng 36(5):613–625

    Article  CAS  Google Scholar 

  26. Zhanj ZJ, Xu JH, He YC, Ouyang LM, Liu YY, Imanaka T (2010) Efficient production of (R)- mandelic acid with highly substrate/product tolerant and enatioselective nitrilase from recombinant Alcaligenes sp. Process Biochem 45:887–891

    Article  CAS  Google Scholar 

  27. Bhatia SK, Mehta PK, Bhatia RK, Bhalla TC (2013) Optimization of arylacetonitrilase production from Alcaligenes sp. MTCC 10675 and its application in mandelic acid synthesis. Appl Microbiol Biotechnol 98:83–94

    Article  CAS  Google Scholar 

  28. Brochado AR, Matos C, Moller BL, Hansen J, Mortensen U, Patil KR (2010) Improved vanillin production in baker’s yeast through in silico design. Microb Cell Fact 9:84

    Article  CAS  Google Scholar 

  29. Topakas E, Kalogeris E, Kekos D, Macris BJ, Christakopoulos P (2003) Bioconversion of ferulic acid into vanillic acid by the thermophilic fungus Sporotrichum thermophile. Lebensm Wiss U Technol 36:561–565

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the University Grants Commission (UGC), New Delhi, India, for the financial support in the form of PDF to Dr. Savitri and SRF to Vijay Kumar and Virender Kumar. We are also thankful to computational facility at Sub Distributed Information Centre, Himachal Pradesh University, Shimla-171005, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tek Chand Bhalla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhalla, T.C., Prashant, Kumari, N. et al. Synthesis of vanillic acid using whole cell nitrilase of wild and mutant Gordonia terrae . Bioprocess Biosyst Eng 39, 67–73 (2016). https://doi.org/10.1007/s00449-015-1490-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1490-8

Keywords

Navigation