Skip to main content
Log in

Increased polysaccharide production and biosynthetic gene expressions in a submerged culture of Ganoderma lucidum by the overexpression of the homologous α-phosphoglucomutase gene

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study aimed to improve the production of polysaccharide by engineering the biosynthetic pathway in Ganoderma lucidum through the overexpression of α-phosphoglucomutase (PGM) gene. PGM is responsible for the linkage between sugar catabolism and sugar anabolism. The effects of PGM gene overexpression on intracellular polysaccharide (IPS) content, extracellular polysaccharide (EPS) production and transcription levels of three genes encoding the enzymes involved in polysaccharide biosynthesis, including PGM, UDP-glucose pyrophosphorylase (UGP), and β-1,3-glucan synthase (GLS), were investigated. The maximum IPS content and EPS production in G. lucidum overexpressing the PGM gene were 23.67 mg/100 mg dry weight and 1.76 g/L, respectively, which were higher by 40.5 and 44.3 % than those of the wild-type strain. The transcription levels of PGM, UGP and GLS were upregulated by 4.77-, 1.51- and 1.53-fold, respectively, in the engineered strain, suggesting that increased polysaccharide biosynthesis may result from a higher expression of those genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Babitskaya VG, Shcherba VV, Puchkova TA, Smirnov DA (2005) Polysaccharides of Ganoderma lucidum: factors affecting their production. Appl Biochem Microbiol 41(2):169–173

    Article  CAS  Google Scholar 

  2. Boels IC, Kleerebezem M, de Vos WM (2003) Engineering of carbon distribution between glycolysis and sugar nucleotide biosynthesis in Lactococcus lactis. Appl Environ Microbiol 69(2):1129–1135

    Article  CAS  Google Scholar 

  3. Boels IC, Ramos A, Kleerebezem M, De Vos WM (2001) Functional analysis of the Lactococcus lactis galU and galE genes and their impact on sugar nucleotide and exopolysaccharide biosynthesis. Appl Environ Microbiol 67(7):3033–3040

    Article  CAS  Google Scholar 

  4. Boels IC, van Kranenburg R, Kanning MW, Chong BF, de Vos WM, Kleerebezem M (2003) Increased exopolysaccharide production in Lactococcus lactis due to increased levels of expression of the NIZO B40 eps gene cluster. Appl Environ Microbiol 69(8):5029–5031

    Article  CAS  Google Scholar 

  5. Chen H, Yan M, Zhu J, Xu X (2011) Enhancement of exo-polysaccharide production and antioxidant activity in submerged cultures of Inonotus obliquus by lignocellulose decomposition. J Ind Microbiol Biotechnol 38(2):291–298

    Article  CAS  Google Scholar 

  6. Chen SL, Xu J, Liu C, Zhu YJ, Nelson DR, Zhou SG, Li CF, Wang LZ, Guo X, Sun YZ, Luo HM, Li Y, Song JY, Henrissat B, Levasseur A, Qian J, Li JQ, Luo X, Shi LC, He L, Xiang L, Xu XL, Niu YY, Li QS, Han MV, Yan HX, Zhang J, Chen HM, Lv AP, Wang Z, Liu MZ, Schwartz DC, Sun C (2012) Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat Commun 3:913

    Article  Google Scholar 

  7. Degeest B, De Vuyst L (2000) Correlation of activities of the enzymes alpha-phosphoglucomutase, UDP-galactose4-epimerase, and UDP-glucose pyrophosphorylase with exopolysaccharide biosynthesis by Streptococcus thermophilus LY03. Appl Environ Microbiol 66(8):3519–3527

    Article  CAS  Google Scholar 

  8. Fang QH, Tang YJ, Zhong JJ (2002) Significance of inoculation density control in production of polysaccharide and ganoderic acid by submerged culture of Ganoderma lucidum. Process Biochem 37(12):1375–1379

    Article  CAS  Google Scholar 

  9. Fang QH, Zhong JJ (2002) Submerged fermentation of higher fungus Ganoderma lucidum for production of valuable bioactive metabolites-ganoderic acid and polysaccharide. Biochem Eng J 10(1):61–65

    Article  CAS  Google Scholar 

  10. Gao H, Gu WY (2007) Optimization of polysaccharide and ergosterol production from Agaricus brasiliensis by fermentation process. Biochem Eng J 33(3):202–210

    Article  CAS  Google Scholar 

  11. Gastebois A, Clavaud C, Aimanianda V, Latge JP (2009) Aspergillus fumigatus: cell wall polysaccharides, their biosynthesis and organization. Future Microbiol 4(5):583–595

    Article  CAS  Google Scholar 

  12. Hardy GG, Caimano MJ, Yother J (2000) Capsule biosynthesis and basic metabolism in Streptococcus pneumoniae are linked through the cellular phosphoglucomutase. J Bacteriol 182(7):1854–1863

    Article  CAS  Google Scholar 

  13. Hsieh C, Tseng MH, Liu CJ (2006) Production of polysaccharides from Ganoderma lucidum (CCRC 36041) under limitations of nutrients. Enzyme Microb Technol 38(1–2):109–117

    Article  CAS  Google Scholar 

  14. Huang HC, Chen CI, Hung CN, Liu YC (2009) Experimental analysis of the oil addition effect on mycelia and polysaccharide productions in Ganoderma lucidum submerged culture. Bioproc Biosyst Eng 32(2):217–224

    Article  CAS  Google Scholar 

  15. Lee KM, Lee SY, Lee HY (1999) Bistage control of pH for improving exopolysaccharide production from mycelia of Ganoderma lucidum in an air-lift fermentor. J Biosci Bioeng 88(6):646–650

    Article  CAS  Google Scholar 

  16. Lee WY, Park Y, Ahn JK, Ka KH, Park SY (2007) Factors influencing the production of endopolysaccharide and exopolysaccharide from Ganoderma applanatum. Enzyme Microb Technol 40(2):249–254

    Article  CAS  Google Scholar 

  17. Levander F, Svensson M, Radstrom P (2002) Enhanced exopolysaccharide production by metabolic engineering of Streptococcus thermophilus. Appl Environ Microbiol 68(2):784–790

    Article  CAS  Google Scholar 

  18. Liu GQ, Zhang KC (2007) Enhancement of polysaccharides production in Ganoderma lucidum by the addition of ethyl acetate extracts from Eupolyphaga sinensis and Catharsius molossus. Appl Microbiol Biotechnol 74(3):572–577

    Article  CAS  Google Scholar 

  19. Liu YS, Wu JY (2012) Effects of Tween 80 and pH on mycelial pellets and exopolysaccharide production in liquid culture of a medicinal fungus. J Ind Microbiol Biotechnol 39(4):623–628

    Article  CAS  Google Scholar 

  20. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  21. Sa-Correia I, Fialho AM, Videira P, Moreira LM, Marques AR, Albano H (2002) Gellan gum biosynthesis in Sphingomonas paucimobilis ATCC 31461: genes, enzymes and exopolysaccharide production engineering. J Ind Microbiol Biotechnol 29(4):170–176

    Article  CAS  Google Scholar 

  22. Spatafora G, Rohrer K, Barnard D, Michalek S (1995) A Streptococcus mutans mutant that synthesizes elevated levels of intracellular polysaccharide is hypercariogenic in vivo. Infect Immun 63(7):2556–2563

    CAS  Google Scholar 

  23. Tang YJ, Zhong JJ (2002) Exopolysaccharide biosynthesis and related enzyme activities of the medicinal fungus, Ganoderma lucidum, grown on lactose in a bioreactor. Biotechnol Lett 24(12):1023–1026

    Article  CAS  Google Scholar 

  24. Tang YJ, Zhang W, Zhong JJ (2009) Performance analyses of a pH-shift and DOT-shift integrated fed-batch fermentation process for the production of ganoderic acid and Ganoderma polysaccharides by medicinal mushroom Ganoderma lucidum. Bioresour Technol 100(5):1852–1859

    Article  CAS  Google Scholar 

  25. Thorne L, Mikolajczak MJ, Armentrout RW, Pollock TJ (2000) Increasing the yield and viscosity of exopolysaccharides secreted by Sphingomonas by augmentation of chromosomal genes with multiple copies of cloned biosynthetic genes. J Ind Microbiol Biotechnol 25(1):49–57

    Article  CAS  Google Scholar 

  26. Torino MI, Mozzi F, Font de Valdez G (2005) Exopolysaccharide biosynthesis by Lactobacillus helveticus ATCC 15807. Appl Microbiol Biotechnol 68(2):259–265

    Article  CAS  Google Scholar 

  27. Velasco SE, Yebra MJ, Monedero V, Ibarburu I, Duenas MT, Irastorza A (2007) Influence of the carbohydrate source beta-glucan production and enzyme activities involved in sugar metabolism in Pediococcus parvulus 2.6. Int J Food Microbiol 115(3):325–334

    Article  CAS  Google Scholar 

  28. Wagner R, Mitchell DA, Sassaki GL, Amazonas M (2004) Links between morphology and physiology of Ganoderma lucidum in submerged culture for the production of exopolysaccharide. J Biotechnol 114(1–2):153–164

    Article  CAS  Google Scholar 

  29. Wang SH, Liang CJ, Weng YW, Chen YH, Hsu HY, Chien HF, Tsai JS, Tseng YC, Li CY, Chen YL (2012) Ganoderma lucidum polysaccharides prevent platelet-derived growth factor-stimulated smooth muscle cell proliferation in vitro and neointimal hyperplasia in the endothelial-denuded artery in vivo. J Cell Physiol 227(8):3063–3071

    Article  CAS  Google Scholar 

  30. Xu JW, Xu YN, Zhong JJ (2010) Production of individual ganoderic acids and expression of biosynthetic genes in liquid static and shaking cultures of Ganoderma lucidum. Appl Microbiol Biotechnol 85(4):941–948

    Article  CAS  Google Scholar 

  31. Xu JW, Xu YN, Zhong JJ (2012) Enhancement of ganoderic acid accumulation by overexpression of an N-terminal truncated 3-hydroxy-3-methylglutaryl CoA reductase gene in the basidiomycete Ganoderma lucidum. Appl Environ Microbiol 78(22):7968–7976

    Article  CAS  Google Scholar 

  32. Xu JW, Zhao W, Zhong JJ (2010) Biotechnological production and application of ganoderic acids. Appl Microbiol Biotechnol 87(2):457–466

    Article  CAS  Google Scholar 

  33. Yu X, Ji SL, He YL, Reng MF, Xu JW (2014) Development of an expression plasmid and its use in genetic manipulation of lingzhi or reishi medicinal mushroom, Ganoderma lucidum (higher basidiomycetes). Int J Med Mushrooms 16(2):161–168

    Article  CAS  Google Scholar 

  34. Zhang BB, Cheung PCK (2011) Use of stimulatory agents to enhance the production of bioactive exopolysaccharide from Pleurotus tuber-regium by submerged fermentation. J Agric Food Chem 59(4):1210–1216

    Article  CAS  Google Scholar 

  35. Zhang W, Tang YJ (2008) A novel three-stage light irradiation strategy in the submerged fermentation of medicinal mushroom Ganoderma lucidum for the efficient production of ganoderic acid and Ganoderma polysaccharides. Biotechnol Prog 24(6):1249–1261

    Article  CAS  Google Scholar 

  36. Zhou JS, Ji SL, Ren MF, He YL, Jing XR, Xu JW (2014) Enhanced accumulation of individual ganoderic acids in a submerged culture of Ganoderma lucidum by the overexpression of squalene synthase gene. Biochem Eng J 90:178–183

    Article  CAS  Google Scholar 

  37. Zhu LW, Tang YJ (2010) Significance of protein elicitor isolated from Tuber melanosporum on the production of ganoderic acid and Ganoderma polysaccharides during the fermentation of Ganoderma lucidum. Bioproc Biosyst Eng 33(8):999–1005

    Article  CAS  Google Scholar 

  38. Zhu LW, Zhong JJ, Tang YJ (2008) Significance of fungal elicitors on the production of ganoderic acid and Ganoderma polysaccharides by the submerged culture of medicinal mushroom Ganoderma lucidum. Process Biochem 43(12):1359–1370

    Article  CAS  Google Scholar 

  39. Zhu LW, Zhong JJ, Tang YJ (2010) Multi-fed batch culture integrated with three-stage light irradiation and multiple additions of copper ions for the hyperproduction of ganoderic acid and Ganoderma polysaccharides by the medicinal mushroom Ganoderma lucidum. Process Biochem 45(12):1904–1911

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (31360495), the start-up grant from Kunming University of Science and Technology (KKSY201226107), Department of Science and Technology of Yunnan Province (2012BA015), CNTC (110201201009 BR-03) and Hongyun Honghe Tobacco (Group) Co. Ltd. (HYHH2012HX06) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-Wei Xu or Ming-He Mo.

Additional information

J.-W. Xu and S.-L. Ji have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, JW., Ji, SL., Li, HJ. et al. Increased polysaccharide production and biosynthetic gene expressions in a submerged culture of Ganoderma lucidum by the overexpression of the homologous α-phosphoglucomutase gene. Bioprocess Biosyst Eng 38, 399–405 (2015). https://doi.org/10.1007/s00449-014-1279-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1279-1

Keywords

Navigation