Skip to main content
Log in

Combining De Ley–Doudoroff and methylerythritol phosphate pathways for enhanced isoprene biosynthesis from d-galactose

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

An engineered Escherichia coli strain was developed for enhanced isoprene production using d-galactose as substrate. Isoprene is a valuable compound that can be biosynthetically produced from pyruvate and glyceraldehyde-3-phosphate (G3P) through the methylerythritol phosphate pathway (MEP). The Leloir and De Ley–Doudoroff (DD) pathways are known existing routes in E. coli that can supply the MEP precursors from d-galactose. The DD pathway was selected as it is capable of supplying equimolar amounts of pyruvate and G3P simultaneously. To exclusively direct d-galactose toward the DD pathway, an E. coli ΔgalK strain with blocked Leloir pathway was used as the host. To obtain a fully functional DD pathway, a dehydrogenase encoding gene (gld) was recruited from Pseudomonas syringae to catalyze d-galactose conversion to d-galactonate. Overexpressions of endogenous genes known as MEP bottlenecks, and a heterologous gene, were conducted to enhance and enable isoprene production, respectively. Growth test confirmed a functional DD pathway concomitant with equimolar generation of pyruvate and G3P, in contrast to the wild-type strain where G3P was limiting. Finally, the engineered strain with combined DD–MEP pathway exhibited the highest isoprene production. This suggests that the equimolar pyruvate and G3P pools resulted in a more efficient carbon flux toward isoprene production. This strategy provides a new platform for developing improved isoprenoid producing strains through the combined DD–MEP pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hong SY, Zurbriggen AS, Melis A (2012) Isoprene hydrocarbons production upon heterologous transformation of Saccharomyces cerevisiae. J Appl Microbiol 113:52–65

    Article  CAS  Google Scholar 

  2. Weissermel K, Arpe HJ (2008) 1,3-Diolefins. Industrial organic chemistry. Wiley, Germany, pp 117–119

    Google Scholar 

  3. Lv X, Xu H, Yu H (2013) Significantly enhanced production of isoprene by ordered coexpression of genes dxs, dxr, and idi in Escherichia coli. Appl Microbiol Biotechnol 97:2357–2365

    Article  CAS  Google Scholar 

  4. Lange BM, Rujan T, Martin W, Croteau R (2009) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci USA 97:13172–13177

    Article  Google Scholar 

  5. Kuzuyama T (2002) Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci Biotechnol Biochem 66:1619–1627

    Article  CAS  Google Scholar 

  6. Rohmer M, Seemann M, Horbach S, Bringer-Meyer S, Sahm H (1996) Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J Am Chem Soc 8:2564–2566

    Article  Google Scholar 

  7. Zhao Y, Yang J, Qin B, Li Y, Sun Y, Su S, Xian M (2011) Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway. Appl Microbiol Biotechnol 90:1915–1922

    Article  CAS  Google Scholar 

  8. Ajikumar PK, Xiao W-H, Tyo KEJ, Wang Y, Simeon F, Leonard E et al (2010) Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330:70

    Article  CAS  Google Scholar 

  9. Morrone D, Lowry L, Determan MK, Hershey DM, Xu M, Peters RJ (2010) Increasing diterpene yield with a modular metabolic engineering system in E. coli: comparison of MEV and MEP isoprenoid precursor pathway engineering. Appl Microbiol Biotechnol 85:1893–1906

    Article  CAS  Google Scholar 

  10. Kim S-W, Keasling JD (2001) Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnol Bioeng 72:408–415

    Article  CAS  Google Scholar 

  11. Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802

    Article  CAS  Google Scholar 

  12. Farmer WR, Liao JC (2001) Precursor balancing for metabolic engineering of lycopene production in Escherichia coli. Biotechnol Prog 17:57–61

    Article  CAS  Google Scholar 

  13. Liu H, Sun Y, Ramos KMR, Nisola GM, Valdehuesa KNG, Lee WK, Chung W-J (2013) Combination of Entner–Doudoroff pathway with MEP increases isoprene production in engineered Escherichia coli. PLoS One 8:e83290

    Article  Google Scholar 

  14. Wi SG, Kim HJ, Mahadevan SA, Yang DJ, Bae HJ (2009) The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. Bioresour Technol 100:6658–6660

    Article  CAS  Google Scholar 

  15. Malihan LB, Nisola GM, Mittal N, Seo JG, Chung WJ (2014) Blended ionic liquid systems for macroalgae pretreatment. Renew Energ 66:596–604

    Article  CAS  Google Scholar 

  16. Holden HM, Rayment I, Thoden JB (2003) Structure and function of enzymes of the Leloir pathway for galactose metabolism. J Biol Chem 278:43885–43888

    Article  CAS  Google Scholar 

  17. De Ley J, Doudoroff M (1957) The metabolism of d-galactose in Pseudomonas saccharophila. J Biol Chem 227:745–757

    Google Scholar 

  18. Cooper RA (1978) The utilization of d-galactonate and d-2-oxo-3-deoxygalactonate by Escherichia coli K-12. Arch Microbiol 118:199–206

    Article  CAS  Google Scholar 

  19. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:1–11

    Article  Google Scholar 

  20. Sambrook J, Russell DW (2001) Molecular cloning-a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  21. Novagen, λDE3 lysogenization kit user protocol TB031 Rev. C0805 2005 http://www.emdmillipore.com/life-science-research/technical-bulletins/c_IMOb.s1OXkUAAAEj2xsYzMkq. Accessed 7 Sept 2012

  22. Liu H, Ramos KRM, Valdehuesa KNG, Nisola GM, Malihan LB, Lee WK, Chung W-J (2013) Metabolic engineering of Escherichia coli for biosynthesis of d-galactonate. Bioprocess Biosyst Eng. doi:10.1007/s00449-013-1003-6

    Google Scholar 

  23. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  CAS  Google Scholar 

  24. Esnouf MP, Harris RP, McVittie JD (1982) Triosephosphate isomerase from chicken and rabbit muscle. Methods Enzymol 89:579–583

    Article  CAS  Google Scholar 

  25. Fleischer WR (1970) Enzymatic methods for lactic and pyruvic acids in Standard methods of clinical chemistry, vol 6. Academic Press USA, New York

    Google Scholar 

  26. Tomova N, Dimitrieva Setchenska M, Dimova O, Detchev G (1971) Spectrophotometric determination of the intermediates of glycolysis and the pentose phosphate cycle in Chlorella cells. Arch Microbiol 76:204–211

    CAS  Google Scholar 

  27. Lien OG (1959) Determination of gluconolactone, galactonolactone, and their free acids by hydroxamate method. Anal Chem 31:1363–1366

    Article  CAS  Google Scholar 

  28. Yadav VG, De Mey M, Lim CG, Kumaran Ajikumar PK, Stephanopoulos G (2012) The future of metabolic engineering and synthetic biology: towards a systematic practice. Metab Eng 14:233–241

    Article  CAS  Google Scholar 

  29. Zou R, Zhou K, Stephanopoulus G, Too HP (2013) Combinatorial engineering of 1-deoxy-d-xylulose 5-phosphate pathway using cross-lapping in vitro assembly (CLIVA) method. PLoS One 8:e79557

    Article  CAS  Google Scholar 

  30. Chandran SS, Kealey JT, Reeves CD (2011) Microbial production of isoprenoids. Proc Biochem 46:1703–1710

    Article  CAS  Google Scholar 

  31. Chang MCY, Keasling JD (2006) Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol 2:674–681

    Article  CAS  Google Scholar 

  32. Sellick CA, Campbell RN, Reece RJ (2008) Galactose metabolism in yeast-structure and regulation of the Leloir pathway enzymes and the genes encoding them. Int Rev Cell Mol Biol 269:111–150

    Article  CAS  Google Scholar 

  33. Flamholz A, Noor E, Bar-Even A, Liebermeister W, Milo R (2013) Glycolytic strategy as a tradeoff between energy yield and protein cost. Proc Natl Acad Sci USA 110:10039–10044

    Article  CAS  Google Scholar 

  34. Peekhaus N, Conway T (1998) What’s for dinner?: Entner–Doudoroff metabolism in Escherichia coli. J Bacteriol 180:3495–3502

    CAS  Google Scholar 

  35. Szumilo T (1981) Pathway for d-galactonate catabolism in nonpathogenic mycobacteria. J Bacteriol 148:368–370

    CAS  Google Scholar 

  36. Arias A, Cerveñansky C (1986) Galactose metabolism in Rhizobium meliloti L5-30. J Bacteriol 167:1092–1094

    CAS  Google Scholar 

  37. Deacon J, Cooper RA (1977) d-Galactonate utilization by enteric bacteria. FEBS Lett 77:201–205

    Article  CAS  Google Scholar 

  38. Wong TY, Yao X (1994) The De Ley–Doudoroff pathway of galactose metabolism in Azotobacter vinelandii. Appl Environ Microbiol 60:2065–2068

    CAS  Google Scholar 

  39. Hua SS, Markovitz A (1974) Multiple regulation of galactose operon—genetic evidence for a distinct site in the galactose operon that responds to capr gene regulation in Escherichia coli K-12. Proc Natl Acad Sci USA 71:507–511

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2009-0093816).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wook-Jin Chung.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1951 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, K.R.M., Valdehuesa, K.N.G., Liu, H. et al. Combining De Ley–Doudoroff and methylerythritol phosphate pathways for enhanced isoprene biosynthesis from d-galactose. Bioprocess Biosyst Eng 37, 2505–2513 (2014). https://doi.org/10.1007/s00449-014-1228-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1228-z

Keywords

Navigation