Skip to main content

Advertisement

Log in

Two-stage biogas production by co-digesting molasses wastewater and sewage sludge

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

We evaluated the feasibility of co-digesting molasses wastewater and sewage sludge in a two-stage hydrogen- and methane-producing system. The highest energy was recovered at the 21-h hydraulic retention time (HRT) of the first hydrogenic reactor and at 56-h HRT of the secondary methanogenic reactor. Hence, the two-stage system recovered 1,822 kJ from 1 L of the mixed wastes (19.7: hydrogenic reactor plus, 1,802 kJ L−1: methanogenic reactor). Despite the overloaded VFA-run with a short HRT of 56 h, the GAC-CH4 reactor increased methane production rate and yields due to enhanced pH buffer capacity. An RNA-based community analysis showed that the Ethanoligenens and Methanosaeta dominated the hydrogen and methane bioreactor, respectively. The two-stage system of co-digesting molasses and sewage sludge is particularly cost-effective due to non-pretreatment of sewage sludge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Heo JY, Yoo SH (2013) The public’s value of hydrogen fuel cell buses: a contingent valuation study. Int J Hydrogen Energy 38:4232–4240

    Article  CAS  Google Scholar 

  2. Chinellato G, Cavinato C, Bolzonella D, Heaven S, Banks CJ (2013) Biohydrogen production from food waste in batch and semi-continuous conditions: evaluation of a two-phase approach with digestate recirculation for pH control. Int J Hydrogen Energy 38:4351–4360

    Article  CAS  Google Scholar 

  3. Wang B, Li Y, Ren N (2013) Biohydrogen from molasses with ethanol-type fermentation: effects of hydraulic retention time. Int J Hydrogen Energy 38:4361–4367

    Article  CAS  Google Scholar 

  4. Kim M, Liu C, Noh JW, Yang Y, Oh S, Shimizu K, Lee DY, Zhang Z (2013) Hydrogen and methane production from untreated rice straw and raw sewage sludge under thermophilic anaerobic conditions. Int J Hydrogen Energy 38:8648–8656

    Article  CAS  Google Scholar 

  5. Li J, Li B, Zhu G, Ren N, Bo L, He J (2007) Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR). Int J Hydrogen Energy 32:3274–3283

    Article  CAS  Google Scholar 

  6. Ren N, Li J, Li B, Wang Y, Liu S (2006) Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int J Hydrogen Energy 31:2147–2157

    Article  CAS  Google Scholar 

  7. Gue WQ, Ren NQ, Wang XJ, Xiang WS, Meng ZH, Ding J, Qu YY, Zhang LS (2008) Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed (EGSB) reactor. Int J Hydrogen Energy 33:4981–4988

    Article  Google Scholar 

  8. Aragaw T, Andargie M, Gessesse A (2013) Co-digestion of cattle manure with organic kitchen waste to increase biogas production using rumen fluid as inoculums. Int J Phys Sci 8:443–450

    CAS  Google Scholar 

  9. Dai X, Duan N, Dong B, Dai L (2013) High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: stability and performance. Waste Manag 33:308–316

    Article  CAS  Google Scholar 

  10. Lee M, Hidaka T, Hagiwara W, Tsuno H (2009) Comparative performance and microbial diversity of hyperthermophilic and thermophilic co-digestion of kitchen garbage and excess sludge. Bioresour Technol 100:578–585

    Article  CAS  Google Scholar 

  11. Li M, Zhao YC, Guo Q, Qian XQ, Niu DJ (2008) Bio-hydrogen production from food waste and sewage sludge in the presence of aged refuse excavated from refuse landfill. Renew Energy 33:2573–2579

    Article  CAS  Google Scholar 

  12. Lee WS, Chua ASM, Yeoh HK, Ngoh GC (2014) A review of the production and applications of waste-derived volatile fatty acids. Chem Eng J 235:83–99

    Article  CAS  Google Scholar 

  13. Kim MS, Lee D (2010) Fermentative hydrogen production from tofu-processing waste and anaerobic digester sludge using microbial consortium. Bioresour Technol 101:S48–S52

    Article  CAS  Google Scholar 

  14. Zhu HG, Parker W, Basnar R, Proracki A, Falletta P, Beland M (2008) Biohydrogen production by anaerobic co-digestion of municipal food waste and sewage sludges. Int J Hydrogen Energy 33:3651–3659

    Article  CAS  Google Scholar 

  15. Kim SH, Han SK, Shin HS (2004) Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. Int J Hydrogen Energy 74:280–287

    Google Scholar 

  16. Liu F, Rotaru AE, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR (2012) Promoting direct interspecies electron transfer with activated carbon. Energy Environ Sci 5:8982–8989

    Article  CAS  Google Scholar 

  17. Yu HQ, Tay JH, Fang HHP (1999) Effects of added powdered and granular activated carbons on start-up performance of UASB reactors. Environ Technol 20:1095–1101

    Article  CAS  Google Scholar 

  18. Kim TG, Moon KE, Yun J, Cho KS (2013) Comparison of RNA- and DNA-based bacterial communities in a lab-scale methane-degrading biocover. Appl Microbiol Biotechnol 97:3171–3181

    Article  CAS  Google Scholar 

  19. DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689

    Article  CAS  Google Scholar 

  20. Qian PY, Wang Y, Lee OO, Lau SCK, Yang JK, Lafi FF, Al-Suwailem A, Wong TYH (2011) Vertical stratification of microbial communities in the Red sea revealed by 16S rDNA pyrosequencing. ISME J 5:507–518

    Article  CAS  Google Scholar 

  21. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  CAS  Google Scholar 

  22. Gontcharova V, Youn E, Wolcott RD, Hollister EB, Gentry TJ, Dowd SE (2010) Black box chimera check (B2C2): a windows-based software for batch depletion of chimeras from bacterial 16S rRNA gene datasets. Open Microbiol J 4:47–52

    Article  CAS  Google Scholar 

  23. Miller GL (1954) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  Google Scholar 

  24. Wang CC, Chang CW, Chu CP, Lee DJ, Chang BV, Liao CS (2003) Producing hydrogen from wastewater sludge by Clostridium bifermentans. J Biotechnol 102:83–92

    Article  CAS  Google Scholar 

  25. Lay JJ, Fan KS, Chang JI, Ku CH (2003) Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge. Int J Hydrogen Energy 28:1361–1367

    Article  CAS  Google Scholar 

  26. Xing D, Ren N, Li Q, Lin M, Wang A, Zhao L (2006) Ethanoligenens harbinense gen. nov., sp. Nov., isolated from molasses wastewater. Int J Syst and Evol Microbiol 56:755–760

    Article  CAS  Google Scholar 

  27. Gioannis GD, Muntoni A, Polettini A, Pomi R (2013) A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Manag 33:1345–1361

    Article  Google Scholar 

  28. Park MJ, Jo JH, Park D, Lee DS, Park JM (2010) Comprehensive study on a two-stage anaerobic digestion process for the sequential production of hydrogen and methane from cost-effective molasses. Int J Hydrogen Energy 35:6194–6202

    Article  CAS  Google Scholar 

  29. Hernandez-Mendoza CE, Buitron G (2013) Suppression of methanogenic activity in anaerobic granular biomass for hydrogen production. J Chem Technol Biotechnol 89:143–149

    Article  Google Scholar 

  30. Noike T (2002) Biological hydrogen production of organic wastes-Development of the two-phase hydrogen production process. In: International symposium on hydrogen and methane fermentation of organic waste. Tokyo, pp 31–39

  31. Bertin L, Berselli S, Fava F, Petrangeli-Papini M, Marchetti L (2004) Anaerobic digestion of olive mill wastewater in biofilm reactors packed with granular activated carbon and “Manville” silica beads. Water Res 38:3167–3178

    Article  CAS  Google Scholar 

  32. Jung KW, Moon C, Cho SK, Kim SH, Shin HS (2013) Conversion of organic solid waste to hydrogen and methane by two-stage fermentation system with reuse of methane fermenter effluent as diluting water in hydrogen fermentation. Bioresour Technol 139:120–127

    Article  CAS  Google Scholar 

  33. Kang J, Kim D, Lee T (2012) Hydrogen production and microbial diversity in sewage sludge fermentation preceded by heat and alkaline treatment. Bioresour Technol 109:239–243

    Article  CAS  Google Scholar 

  34. Ueno Y, Fukui H, Goto M (2007) Operation of a two-stage fermentation process producing hydrogen and methane from organic waste. Environ Sci Technol 41:1413–1419

    Article  CAS  Google Scholar 

  35. Shin HS, Youn JH (2005) Conversion of food waste into hydrogen by thermophilic acidogenesis. Biodegradation 16:33–44

    Article  CAS  Google Scholar 

  36. Fang HHP, Liu H (2002) Effects of pH on hydrogen production from glucose by a mixed culture. Bioresour Technol 82:87–93

    Article  CAS  Google Scholar 

  37. Patel SKS, Kumar P, Kalia VC (2012) Enhancing biological hydrogen production through complementary microbial metabolisms. Int J Hydrogen Energy 37:10590–10603

    Article  CAS  Google Scholar 

  38. Bando Y, Fujimoto N, Suzuki M, Ohnishi A (2013) A microbiological study of biohydrogen production from beer lees. Int J Hydrogen Energy 38:2709–2718

    Article  CAS  Google Scholar 

  39. Sundberg C, Al-Soud WA, Larsson M, Alm E, Yekta SS, Svensson BH, Sørensen SJ, Karlsson A (2013) 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol 85:612–626

    Article  CAS  Google Scholar 

  40. Jaenicke S, Ander C, Bekel T, Bisdorf R, Droge M, Gartemann KH, Junemann S, Kaiser O, Krause L, Tille F, Zakrzewski M, Puhler A, Schluter A, Goesmann A (2011) Comparative and joint analysis of two metagenomic datasets from a biogas fermenter obtained by 454-pyrosequencing. PLoS One 6:e14519

    Article  CAS  Google Scholar 

  41. Merlino G, Rizzi A, Villa F, Sorlini C, Brambilla M, Navarotto P, Bertazzoni B, Zagni M, Araldi F, Daffonchio D (2012) Shifts of microbial community structure during anaerobic digestion of agro-industrial energetic crops and food industry byproducts. J Chem Technol Biotechnol 87:1302–1311

    Article  CAS  Google Scholar 

  42. Shen P, Zhang J, Zhang J, Jiang C, Tang X, Li J (2013) Changes in microbial community structure in two anaerobic systems to treat bagasse spraying wastewater with and without addition of molasses alcohol wastewater. Bioresour Technol 131:333–340

    Article  CAS  Google Scholar 

  43. Hulshoff Pol LW, de Castro Lopes SI, Lettinga G, Lens PNL (2004) Anaerobic sludge granulation. Water Res 38:1376–1389

    Article  CAS  Google Scholar 

  44. Schmidt JE, Ahring BK (1999) Immobilization patterns and dynamics of acetate-utilizing methanogens immobilized in sterile granular sludge in upflow anaerobic sludge blanket reactors. Appl Environ Microbiol 65:1050–1054

    CAS  Google Scholar 

  45. Luo G, Xie L, Zhou Q, Angelidaki I (2011) Enhancement of bioenergy production from organic wastes by two-stage anaerobic hydrogen and methane production process. Bioreasour Technol 102:8700–8706

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (NRF-2012R1A2A2A03046724).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Suk Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JY., Yun, J., Kim, T.G. et al. Two-stage biogas production by co-digesting molasses wastewater and sewage sludge. Bioprocess Biosyst Eng 37, 2401–2413 (2014). https://doi.org/10.1007/s00449-014-1217-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1217-2

Keywords

Navigation