Skip to main content
Log in

Cofactor and CO2 donor regulation involved in reductive routes for polymalic acid production by Aureobasidium pullulans CCTCC M2012223

  • Short Communication
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Polymalic acid (PMA) is a water-soluble polyester with many attractive properties for biomedical application. Its monomer l-malic acid is widely used in the food industry and also a potential C4 platform chemical. Cofactor and CO2 donor involved in the reductive routes were investigated for PMA production by Aureobasidium pullulans. Biotin as the key cofactor of pyruvate carboxylase was favor for the PMA biosynthesis. Na2CO3 as CO2 donor can obviously improved PMA titer when compared with no CO2 supplier NaOH, and also exhibit more advantages than the other donor CaCO3 because of its water-soluble characteristic. A combinational process with addition of biotin 70 mg/L and Na2CO3 as the CO2 donor was scaled-up in 50 L fermentor, achieving the high product 34.3 g/L of PMA and productivity of 0.41 g/L h. This process provides an efficient and economical way for PMA and malic acid production, and is promising for industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ding H, Portilla-Arias J, Patil R, Black KL, Ljubimova JY, Holler E (2011) The optimization of polymalic acid peptide copolymers for endosomolytic drug delivery. Biomaterials 32:5269–5278

    Article  CAS  Google Scholar 

  2. Lanz-Landazuri A, Garcia-Alvarez M, Portilla-Arias J, Martinez de Ilarduya A, Patil R, Holler E, Ljubimova JY, Munoz-Guerra S (2011) Poly(methyl malate) nanoparticles: formation, degradation, and encapsulation of anticancer drugs. Macromol Biosci 11:1370–1377

    Article  CAS  Google Scholar 

  3. Lanz-Landazuri A, Garcia-Alvarez M, Portilla-Arias J, Martinez de Ilarduya A, Holler E, Ljubimova J, Munoz-Guerra S (2012) Modification of microbial polymalic acid with hydrophobic amino acids for drug-releasing nanoparticles. Macromol Chem Phys 213:1623–1631

    Article  CAS  Google Scholar 

  4. Liu SJ, Steinbuchel A (1997) Production of poly(malic acid) from different carbon sources and its regulation in Aureobasidium pullulans. Biotechnol Lett 19:11–14

    Article  Google Scholar 

  5. Manitchotpisit P, Skory CD, Peterson SW, Price NPJ, Vermillion KE, Leathers TD (2011) Poly(beta-l-malic acid) production by diverse phylogenetic clades of Aureobasidium pullulans. J Ind Microbiol Biotechnol 39:125–132

    Article  Google Scholar 

  6. Zhang H, Cai J, Dong J, Zhang D, Huang L, Xu Z, Cen P (2011) High-level production of poly (beta-l-malic acid) with a new isolated Aureobasidium pullulans strain. Appl Microbiol Biotechnol 92:295–303

    Article  CAS  Google Scholar 

  7. Zou X, Zhou Y, Yang ST (2013) Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis. Biotechnol Bioeng 110:2105–2113

    Article  CAS  Google Scholar 

  8. Zhang X, Wang X, Shanmugam KT, Ingram LO (2011) l-Malate production by metabolically engineered Escherichia coli. Appl Environl Microbiol 77:427–434

    Article  CAS  Google Scholar 

  9. Zelle RM, de Hulster E, van Winden WA, de Waard P, Dijkema C, Winkler AA, Geertman J-MA, van Dijken JP, Pronk JT, van Maris AJA (2008) Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol 74:2766–2777

    Article  CAS  Google Scholar 

  10. Wu H, Li Q, Li ZM, Ye Q (2012) Succinic acid production and CO2 fixation using a metabolically engineered Escherichia coli in a bioreactor equipped with a self-inducing agitator. Bioresour Technol 107:376–384

    Article  CAS  Google Scholar 

  11. Xi YL, Chen KQ, Li J, Fang XJ, Zheng XY, Sui SS, Jiang M, Wei P (2011) Optimization of culture conditions in CO2 fixation for succinic acid production using Actinobacillus succinogenes. J Ind Microbiol Biotechnol 38:1605–1612

    Article  CAS  Google Scholar 

  12. Zou X, Hang HF, Chu J, Zhuang YP, Zhang SL (2009) Oxygen uptake rate optimization with nitrogen regulation for erythromycin production and scale-up from 50 L to 372 m(3) scale. Bioresour Technol 100:1406–1412

    Article  CAS  Google Scholar 

  13. Zan ZQ, Zou X (2013) Efficient production of polymalic acid from raw sweet potato hydrolysate with immobilized cells of Aureobasidium pullulans CCTCC M2012223 in aerobic fibrous bed bioreactor. J Chem Technol Biotechnol 88:1822–1827

    Article  CAS  Google Scholar 

  14. Xiong ZQ, Guo MJ, Guo YX, Chu J, Zhuang YP, Wang NS, Zhang SL (2010) RQ feedback control for simultaneous improvement of GSH yield and GSH content in Saccharomyces cerevisiae T65. Enzyme Microb Technol 46:598–602

    Article  CAS  Google Scholar 

  15. Yin X, Madzak C, Du G, Zhou J, Chen J (2012) Enhanced alpha-ketoglutaric acid production in Yarrowia lipolytica WSH-Z06 by regulation of the pyruvate carboxylation pathway. Appl Microbiol Biotechnol 96:1527–1537

    Article  CAS  Google Scholar 

  16. Cheng KK, Wu J, Wang GY, Li WY, Feng J, Zhang JA (2013) Effects of pH and dissolved CO2 level on simultaneous production of 2,3-butanediol and succinic acid using Klebsiella pneumoniae. Bioresour Technol 135:500–503

    Article  CAS  Google Scholar 

  17. Lu S, Eiteman MA, Altman E (2009) Effect of CO2 on succinate production in dual-phase Escherichia coli fermentations. J Biotechnol 143:213–223

    Article  CAS  Google Scholar 

  18. Nagata N, Nakahara T, Tabuchi T (1993) Fermentative production of poly(beta-l-malic acid), a polyelectrolytic biopolyester, by Aureobasidium sp. Biosci Biotechnol Biochem 57:638–642

    Article  CAS  Google Scholar 

  19. Cao WF, Qi BK, Zhao J, Qiao CS, Su Y, Wan YH (2013) Control strategy of pH, dissolved oxygen concentration and stirring speed for enhancing beta-poly (malic acid) production by Aureobasidium pullulans ipe-1. J Chem Technol Biotechnol 88:808–817

    Article  CAS  Google Scholar 

  20. Cao W, Luo J, Zhao J, Qiao C, Ding L, Qi B, Su Y, Wan Y (2012) Intensification of β-poly(l-malic acid) production by Aureobasidium pullulans ipe-1 in the late exponential growth phase. J Ind Microbiol Biotechnol 39:1073–1080

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National High Technology Research and Development Program of China (863 Program) (No. 2014AA021205), the National Transformation Fund for Agricultural Science and Technology (2012F1003006), Fundamental Research Funds for the Central Universities (XDJK2013B039), and the Ability Program of Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control (CSTC2012 gg-yyjsb10002-33).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, X., Tu, G. & Zan, Z. Cofactor and CO2 donor regulation involved in reductive routes for polymalic acid production by Aureobasidium pullulans CCTCC M2012223. Bioprocess Biosyst Eng 37, 2131–2136 (2014). https://doi.org/10.1007/s00449-014-1182-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1182-9

Keywords

Navigation