Skip to main content

Advertisement

Log in

A sensitive monitoring system for mammalian cell cultivation processes: a PAT approach

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Biopharmaceuticals such as antibodies are produced in cultivated mammalian cells, which must be monitored to comply with good manufacturing practice. We, therefore, developed a fully automated system comprising a specific exhaust gas analyzer, inline analytics and a corresponding algorithm to precisely determine the oxygen uptake rate, carbon dioxide evolution rate, carbon dioxide transfer rate, transfer quotient and respiratory quotient without interrupting the ongoing cultivation, in order to assess its reproducibility. The system was verified using chemical simulation experiments and was able to measure the respiratory activity of hybridoma cells and DG44 cells (derived from Chinese hamster ovary cells) with satisfactory results at a minimum viable cell density of ~2.0 × 105 cells ml−1. The system was suitable for both batch and fed-batch cultivations in bubble-aerated and membrane-aerated reactors, with and without the control of pH and dissolved oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(a_{{{\text{co}}_{ 2} }}\) :

Activity of carbon dioxide (–)

\(a_{{{\text{H}}^{ + } }}\) :

Activity of hydrogen ion (–)

\(a_{{{\text{HCO}}_{ 3}^{ - } }}\) :

Activity of hydrogen carbonate (–)

CER:

Carbon dioxide evolution rate (mol l−1 h−1)

c i :

Molar concentration of an ion (mol l−1)

\(c_{{{\text{CO}}_{2} , 0}}\) :

Saturation concentration of carbon dioxide at the boundary layer of the gas phase (mol l−1)

\(c_{{{\text{CO}}_{2} , {\text{g}}}}\) :

Molar concentration of carbon dioxide in the gas phase (mol l−1)

\(c_{{{\text{CO}}_{2} , {\text{l}}}}\) :

Molar concentration of carbon dioxide in the liquid phase (mol l−1)

\(c_{{{\text{HCO}}_{3}^{ - } }}\) :

Molar concentration of hydrogen carbonate (mol l−1)

\(c_{\text{IC}}\) :

Total molar concentration of inorganic carbon (mol l−1)

\(c_{\text{IC, t1}}\) :

Molar concentration of inorganic carbon at time one (mol l−1)

\(c_{\text{IC, t2}}\) :

Molar concentration of inorganic carbon at time two (mol l−1)

CT:

Total carbon dioxide transfer (mol l−1)

CTR:

Carbon dioxide transfer rate (mol l−1 h−1)

c*:

Saturation concentration of carbon dioxide (mol l−1)

\(\frac{{{\text{dc}}_{\text{IC}} }}{{{\text{d}}_{t} }}\) :

Variation of inorganic carbon concentration in one period (mol l−1 h−1)

\(H_{{{\text{CO}}_{2} }}\) :

Henry constant for carbon dioxide (mol l−1 bar−1)

I:

Ionic strength (mol l−1)

\({\text{k}}_{\text{L}} a_{{{\text{CO}}_{2} }}\) :

Volume-specific carbon dioxide mass transfer coefficient (h−1)

\(K_{\text{S}}\) :

Mass action constant (mol l−1)

OTR:

Oxygen transfer rate (mol l−1 h−1)

OUR:

Oxygen uptake rate (mol l−1 h−1)

p ambient :

Ambient pressure (bar)

\(p_{{{\text{CO}}_{2} , {\text{Ferm}}}}\) :

Partial pressure of carbon dioxide in the liquid phase of the bioreactor (bar)

RQ:

Respiratory quotient (–)

T :

Temperature (K)

T1 headspace :

Time delay caused by headspace of the bioreactor (h)

TQ:

Transfer quotient (–)

t :

Time (h)

t P :

Process time (h)

τ :

Delay time (h)

\(V_{\text{culture volume}}\) :

Culture volume in the bioreactor (l)

\(\dot{V}_{\text{inlet, gas}}\) :

Inlet gas flow rate (l h−1)

\(V_{\text{m}}\) :

Molar gas volume (mol l−1)

\(x_{{{\text{CO}}_{2} , {\text{in}}}}\) :

Molar fraction of carbon dioxide in the inlet gas (%)

\(x_{{{\text{CO}}_{2} , {\text{out}}}}\) :

Molar fraction of carbon dioxide in the off-gas (%)

\(x_{{{\text{O}}_{2} , {\text{ in}}}}\) :

Molar fraction of oxygen in the inlet gas (%)

\(x_{{{\text{O}}_{2} , {\text{out}}}}\) :

Molar fraction of oxygen in the off-gas (%)

\(x_{{{\text{O}}_{2} , {\text{ out, averaged}}}}\) :

Average molar fraction of oxygen in the off-gas (%)

\(X_{{{\text{PT}}1,{\text{n}}}}\) :

Value of time point n (depends on step response)

\(X_{{{\text{PT}}1,{\text{n}} - 1}}\) :

Value of time point n-1 (depends on step response)

\(X_{\text{step}}\) :

Current value of step response (depends on step response)

\(\delta_{{{\text{HCO}}_{3}^{ - } }}\) :

Activity coefficient of hydrogen carbonate (–)

\(\xi\) :

Flow rate correction factor (–)

References

  1. Aehle M, Kuprijanov A, Schaepe S, Simutis R, Lübbert A (2011) Increasing batch-to batch reproducibility of CHO cultures by robust open-loop control. Cytotechnology 63(1):41–47

    Article  CAS  Google Scholar 

  2. Aehle M, Kuprijanov A, Schaepe S, Simutis R, Lübbert A (2011) Simplified off-gas analyses in animal cell cultures for process monitoring and control purposes. Biotechnol Lett 33(11):2103–2110

    Article  CAS  Google Scholar 

  3. Aiba S, Furuse H (1990) Some comments on respiratory quotient (RQ) determination from the analysis of exit gas from a fermentor. Biotechnol Bioeng 36(5):534–538

    Article  CAS  Google Scholar 

  4. Behrendt U, Koch S, Gooch DD, Steegmans U, Comer MJ (1994) Mass spectrometry: a tool for on-line monitoring of animal cell culture. Cytotechnology 14:157–165

    Article  CAS  Google Scholar 

  5. Binder H, Buchholz K, Deckwer WD, Hustedt H, Kroner KH, Kula MR, Quicker G, Schumpe A, Wiesmann U (1982) Reaction-Engineering. Springer, Heidelberg

    Google Scholar 

  6. Bliefert C (1978) pH measurements. Publishing company chemistry, UK

    Google Scholar 

  7. Bloemen HHJ, Wu L, van Gulik WM, Heijnen JJ, Verhaegen MHG (2003) Reconstruction of the O2 uptake rate and CO2 evolution rate on a time scale of seconds. AIChE J 49(7):1895–1908

    Article  CAS  Google Scholar 

  8. Bonarius HP, de Gooijer CD, Tramper J, Schmid G (1995) Determination of the respiration quotient in mammalian cell culture in bicarbonate buffered media. Biotechnol Bioeng 45(6):524–535

    Article  CAS  Google Scholar 

  9. Deckwer W, Schumpe A (1978) Estimation of O2 and CO2 solubilites in fermentation media. Biotechnol Bioeng 21:1075–1078

    Google Scholar 

  10. Ducommun P, Ruffieux P, Furter M, Marison I, von Stockar U (2000) A new method for on-line measurement of the volumetric oxygen uptake rate in membrane aerated animal cell cultures. J Biotechnol 78(2):139–147

    Article  CAS  Google Scholar 

  11. FDA (2004) Guidance for Industry. PAT- A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance

  12. Frahm B, Blank HC, Cornand P, Oelssner W, Guth U, Lane P, Munack A, Johannsen K, Portner R (2002) Determination of dissolved CO(2) concentration and CO(2) production rate of mammalian cell suspension culture based on off-gas measurement. J Biotechnol 99(2):133–148

    Article  CAS  Google Scholar 

  13. Goudar CT, Piret JM, Konstantinov KB (2011) Estimating cell specific oxygen uptake and carbon dioxide production rates for mammalian cells in perfusion culture. Biotechnol Prog 27(5):1347–1357

    Article  CAS  Google Scholar 

  14. Hass VC, Pörtner R (2009) Practice of bioprocess engineering. With virtually practical training. Spektrum Akad. Verl, Heidelberg

    Google Scholar 

  15. Henzler H, Kauling DJ (1993) Oxygenation of cell culture. Bioproc Eng 9:61–75

    Article  CAS  Google Scholar 

  16. Haas J (2010) Online determination of oxygen uptake and carbon dioxide production rates in mammalian cell culture using mass spectrometry. Cells and culture/proceedings of the 20th ESACT meeting, Dresden, Thomas Noll ed. Cells and culture, Esact Proceedings, 4: 683–687

  17. Junker B, Wang H (2006) Bioprocess monitoring and computer control: key roots of the current PAT initiative. Biotechnol Bioeng 95(2):226–261

    Article  CAS  Google Scholar 

  18. Lovrecz G, Gray P (1994) Use of on-line gas analysis to monitor recombinant mammalian cell cultures. Cytotechnology 14(3):167–176

    Article  CAS  Google Scholar 

  19. Neeleman R, van den End EJ, van Boxtel AJ (2000) Estimation of the respiration quotient in a bicarbonate buffered batch cell cultivation. J Biotechnol 80(1):85–94

    Article  CAS  Google Scholar 

  20. Oezemre A, Heinzle E (2001) Measurement of oxygen uptake and carbon dioxide production rates of mammalian cells using membrane mass spectrometry. Cytotechnology 37(3):153–162

    Article  CAS  Google Scholar 

  21. Pattison RN, Swamy J, Mendenhall B, Hwang C, Frohlich BT (2000) Measurement and control of dissolved carbon dioxide in mammalian cell culture processes using an in situ fiber optic chemical sensor. Biotechnol Prog 16(5):769–774

    Article  CAS  Google Scholar 

  22. Royce PN (1992) Effect of changes in the pH and carbon dioxide evolution rate on the measured respiratory quotient of fermentations. Biotechnol Bioeng 40(10):1129–1138

    Article  CAS  Google Scholar 

  23. Royce PN, Thornhill NF (1991) Estimation of dissolved carbon dioxide concentrations in aerobic fermentations. AIChE J 37(11):1680–1686

    Article  CAS  Google Scholar 

  24. Schumacher W, Leonhard W (2001) Basic information of automatic control engineering

  25. Sieblist C, Jenzsch M, Pohlscheidt M, Lübbert A (2011) Insights into large-scale cell-culture reactors: i. Liquid mixing and oxygen supply. Biotechnol J 6(12):1532–1546

    Article  CAS  Google Scholar 

  26. Sperandio M (1997) Determination of carbon dioxide evolution rate using on-line gas analysis during dynamic biodegradation experiments. Biotechnol Bioeng 53(3):243–252

    Article  CAS  Google Scholar 

  27. Stumm W, Morgen JJ (1996) Aquatic chemistry. Wiley and sons, New York

    Google Scholar 

  28. Whitford W, Julien C (2007) Analytical technology and PAT. Bio Process Intern (Supplement):32–41

  29. Wu L, Lange HC, van Gulik WM, Heijnen JJ (2003) Determination of in vivo oxygen uptake and carbon dioxide evolution rate from off-gas measurements under highly dynamic conditions. Biotechnol Bioeng 81(4):448–458

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by MWEIMH of Germany with encouragement of the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Biselli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winckler, S., Krueger, R., Schnitzler, T. et al. A sensitive monitoring system for mammalian cell cultivation processes: a PAT approach. Bioprocess Biosyst Eng 37, 901–912 (2014). https://doi.org/10.1007/s00449-013-1062-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1062-8

Keywords

Navigation