Skip to main content
Log in

Fabrication of a circular PDMS microchannel for constructing a three-dimensional endothelial cell layer

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

We describe a simple and efficient fabrication method for generating microfluidic channels with a circular cross-sectional geometry by exploiting the reflow phenomenon of a thick positive photoresist. Initial rectangular shaped positive photoresist micropatterns on a silicon wafer, which were fabricated by a conventional photolithography process, were converted into a half-circular shape by tuning the temperature to around 105 °C. Through optimization of the reflow conditions, we could obtain a perfect circular micropattern of the positive photoresist, and control the diameter in a range from 100 to 400 μm. The resultant convex half-circular photoresist was used as a template for fabricating a concave polydimethylsiloxane (PDMS) through a replica molding process, and a circular PDMS microchannel was produced by bonding two half-circular PDMS layers. A variety of channel dimensions and patterns can be easily prepared, including straight, S-curve, X-, Y-, and T-shapes to mimic an in vivo vascular network. To form an endothelial cell layer, we cultured primary human umbilical vein endothelial cells inside circular PDMS microchannels, and demonstrated successful cell adhesion, proliferation, and alignment along the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Auroux PA, Iossifidis D, Reyes DR, Manz A (2002) Anal Chem 74:2637–2652

    Article  CAS  Google Scholar 

  2. Takayama S, Ostuni E, LeDuc P, Naruse K, Ingber DE, Whitesides GM (2001) Nature 411:1016

    Article  CAS  Google Scholar 

  3. Lucchetta EM, Lee JH, Fu LA, Patel NH, Ismagilov RF (2005) Nature 434:1134–1138

    Article  CAS  Google Scholar 

  4. Dittrich PS, Manz A (2006) Nat Rev 5:210–218

    Article  CAS  Google Scholar 

  5. Kang L, Chung BG, Langer R, Khademhosseini (2008) Drug Discov Today 13:1–13

    Article  CAS  Google Scholar 

  6. Wu MH, Huang SB, Lee GB (2010) Lab Chip 10:939–956

    Article  CAS  Google Scholar 

  7. Kvietys PR, Granger DN (1997) Am J Physiol Gastrointest Liver Physiol 273:G1189–G1199

    CAS  Google Scholar 

  8. Young EW, Simmons CA (2010) Lab Chip 10:143–160

    Article  CAS  Google Scholar 

  9. Ades EW, Candal FJ, Swerlick RA, George VG, Summers S, Bosse DC, Lawley TJ (1992) J Invest Dermatol 99:683–690

    Article  CAS  Google Scholar 

  10. Gerritsen ME (1987) Bioichem Pharmacol 36:2701–2711

    Article  CAS  Google Scholar 

  11. Lee JS (2000) Ann Biomed Eng 28:1–13

    Article  CAS  Google Scholar 

  12. Wang GJ, Lin YC, Hsu SH (2010) Biomed Microdevices 12:841–848

    Article  CAS  Google Scholar 

  13. Borenstein JT, Tupper MM, Mack PJ, Weinberg EJ, Khalil AS, Hsiao J, Garcia-Cardena G (2010) Biomed Microdevices 12:71–79

    Article  Google Scholar 

  14. Becker H, Locascio LE (2002) Talanta 56:267–287

    Article  CAS  Google Scholar 

  15. Wang GJ, Ho KH, Hsu SH, Wang KP (2007) Biomed Microdevices 9:657–663

    Article  Google Scholar 

  16. Grosse A, Grewe M, Fouckhardt H (2001) J Micromech Microeng 11:257–262

    Article  CAS  Google Scholar 

  17. Yang LJ, Chen YT, Kang SW, Wang YC (2004) Int J Mach Tool Manu 44:1109–1114

    Article  Google Scholar 

  18. Futai N, Gu W, Takayama S (2004) Adv Mater 16:1320–1323

    Article  CAS  Google Scholar 

  19. Wilson ME, Kota N, Kim Y, Wang Y, Stolz DB, LeDuc PR, Ozdoganlar OB (2011) Lab Chip 11:1550–1555

    Article  CAS  Google Scholar 

  20. Song SH, Lee CK, Kim TJ, Shin IC, Jun SC, Jung HI (2010) Microfluid Nanofluid 9:533–540

    Article  CAS  Google Scholar 

  21. Fiddes LK, Raz N, Srigunapalan S, Tumarkan E, Simmons CA, Wheeler AR, Kumacheva E (2004) Biomaterials 31:3459–3464

    Article  Google Scholar 

  22. Lee SH, Kang DH, Kim HN, Suh KY (2010) Lab Chip 10:3300–3306

    Article  CAS  Google Scholar 

  23. O’Neill FT, Sheridan JT (2002) Optik 113:391–404

    Article  Google Scholar 

  24. Bauer J, Drescher G, Illig M (1996) J Vac Sci Technol B 14:2485–2492

    Article  CAS  Google Scholar 

  25. Voinov OV (1999) J Appl Mech Tech Phys 40:86–92

    Article  CAS  Google Scholar 

  26. Kubota Y, Kleinman HK, Martin GR, Lawley TJ (1988) J Cell Biol 107:1589–1598

    Article  CAS  Google Scholar 

  27. Young EW, Wheeler AR, Simmons CA (2007) Lab Chip 7:1759–1766

    Article  CAS  Google Scholar 

  28. Tanaka Y, Kikukawa Y, Sato K, Sugii Y, Kitamori T (2007) Anal Sci 23:261–266

    Article  Google Scholar 

  29. Khan OF, Sefton MV (2011) Biomed Microdevices 13:69–87

    Article  CAS  Google Scholar 

  30. Hsu S, Thakar R, Liepmann D, Li S (2005) Biochem Biophys Res Commun 337:401–409

    Article  CAS  Google Scholar 

  31. Li S, Chen BP, Azuma N, Hu YL, Wu SZ, Sumpio BE, Shyy JY, Chien S (1999) J Clin Invest 103:1141–1150

    Article  CAS  Google Scholar 

  32. Shiu YT, Li S, Marganski MA, Usami S, Schwartz MA, Wang YL, Dembo M, Chien S (2004) Biophys J 86:2558–2565

    Article  CAS  Google Scholar 

  33. Ku DN, Giddens DP, Zarins CK, Glagov S (1985) Arterioscler Thromb Vasc Biol 5:293–302

    Article  CAS  Google Scholar 

  34. Song JW, Gu W, Futai N, Warner KA, Nor JE, Takayama S (2005) Anal Chem 77:3993–3999

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Converging Research Center Program funded by the Ministry of Education, Science and Technology (2011K000864), and the Advanced Biomass R&D Center (ABC) of Global Frontier Project funded by the Ministry of Education, Science and Technology (2011-0031357).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Seok Seo.

Additional information

J. S. Choi and Y. Piao contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5787 kb)

Supplementary material 2 (MP4 395 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, J.S., Piao, Y. & Seo, T.S. Fabrication of a circular PDMS microchannel for constructing a three-dimensional endothelial cell layer. Bioprocess Biosyst Eng 36, 1871–1878 (2013). https://doi.org/10.1007/s00449-013-0961-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-0961-z

Keywords

Navigation