Skip to main content
Log in

Immobilization of β-glucosidase in fixed bed reactor and evaluation of the enzymatic activity

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Adsorption of β-glucosidase from almonds, an enzyme with big molecular size (130 kDa, 6.7 nm molecular diameter), on mesoporous SBA-15 silica in fixed bed column was studied. Previously, zeta potential analysis confirmed that the electrostatic interactions between β-glucosidase and SBA-15 were the driving force of the immobilization process. The maximum difference in the zeta potential was 25 mV at pH 3.5. Adsorption isotherm was classified as an L3 (Langmuir type 3) curve according to the Giles classification and fitted to a double Langmuir equation. The adsorbed amount in a fixed bed column was around 3.5 times higher than the amount reached in the adsorption in batch. In addition, the β-glucosidase was strongly immobilized on SBA-15 with only 7 % of leaching in the washing step with buffer solution. Immobilized β-glucosidase was catalytically active in a continuous process, reaching 100 % substrate conversion and maintaining this activity level for more than 10 h without deactivation of the enzyme. Adsorption–desorption isotherms at 77 K before and after the adsorption were carried out, concluding that the adsorption of β-glucosidase was produced blocking the pore mouth, so that a part of the enzyme penetrates inside and another part stays outside the pore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Díaz JF, Balkus KJ Jr (1996) J Mol Catal B Enzym 2:115–126

    Article  Google Scholar 

  2. Jin W, Brennan JD (2002) Anal Chim Acta 461:1–36

    Article  CAS  Google Scholar 

  3. Xue P, Lu GZ, Guo YL, Wang YS, Guo Y (2004) J Mol Catal B Enzym 30:75–81

    Article  CAS  Google Scholar 

  4. Lee C, Lin T, Mou C (2009) Nanotoday 4:165–179

    CAS  Google Scholar 

  5. Gómez JM, Romero MD, Hodaifa G, De la Parra E (2009) Eng Life Sci 9(4):336–341

    Article  Google Scholar 

  6. Yiu HHP, Wright PA, Botting NP (2001) Micropor Mesopor Mater 44–45:763–768

    Article  Google Scholar 

  7. Takahashi H, Li B, Sassaki T, Miyazaki C, Kajino T, Inagaki S (2001) Micropor Mesopor Mater 44–45:755–762

    Article  Google Scholar 

  8. Vinu A, Murugesan V, Tangermann O, Hartmann M (2004) Chem Mater 16:3056–3065

    Article  CAS  Google Scholar 

  9. Katiyar A, Ji L, Smirniotis P, Pinto NG (2005) J Chromatogr A 1069:119–126

    Article  CAS  Google Scholar 

  10. Hudson S, Magner E, Cooney J, Hodnett BK (2005) J Phys Chem B 109(41):10496

    Article  Google Scholar 

  11. Miyahara M, Vinu A, Hossain KZ, Nakanishi T, Ariga K (2006) Thin Solid Films 499:13–18

    Article  CAS  Google Scholar 

  12. Essa H, Magner E, Cooney J, Hodnett BK (2007) J Mol Catal B Enzym 49:61–68

    Article  CAS  Google Scholar 

  13. Kim M, Kim J, Lee J, Shin S, Bin H, Hyeon T, Park HG, Chang HN (2008) Micropor Mesopor Mater 111:18–23

    Article  CAS  Google Scholar 

  14. Abdullah AZ, Sulaiman NS, Kamaruddin AH (2009) Biochem Eng J 44:263–270

    Article  CAS  Google Scholar 

  15. Xian Y, Xian Y, Zhou L, Wu F, Ling Y, Jin L (2007) Electrochem Commun 9(1):142–148

    Article  CAS  Google Scholar 

  16. Rosales-Hernandez MC, Mendieta-Wejebe JE, Correa-Basurto J, Vazquez-Alcantara JI, Terres-Rojas E, Trujill-Ferrar J (2007) Int J Biol Macromol 40(5):444–448

    Article  CAS  Google Scholar 

  17. Lu Y, Guo Y, Wang Y, Liu X, Wang Y, Guo Y, Zhang Z, Lu G (2008) Micropor Mesopor Mater 114:507–510

    Article  Google Scholar 

  18. Shah P, Sridevi N, Prabhune A, Ramaswamy V (2008) Micropor Mesopor Mater 116:157–165

    Article  CAS  Google Scholar 

  19. Takimoto A, Shiomi T, Ino K, Tsunoda T, Kawai A, Mizukami F, Sakaguchi K (2008) Micropor Mesopor Mater 116:601–606

    Article  CAS  Google Scholar 

  20. Gómez JM, Romero MD, Fernández TM, Garcia S (2010) J Porous Mater 17:657–662

    Article  Google Scholar 

  21. Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552

    Article  CAS  Google Scholar 

  22. Schultza H, Metreveli G, Franzreb M, Frimmel FH, Syldatk C (2008) Colloids Surf B Biointerf 66:39–44

    Article  Google Scholar 

  23. Giles CH, MacEwan TH, Nakhwa SN, Smith DJ (1960) Chem Soc 3973–3993

  24. González-García CM, González-Martín ML, González JF, Sabio E, Ramiro A, Gañán J (2004) Powder Technol 148:32–37

    Article  Google Scholar 

  25. Vinu A, Miyahara M, Ariga K (2005) J Phys Chem B 109:6436–6441

    Article  CAS  Google Scholar 

  26. Fischer H, Plikarpov I, Craievich A (2004) Protein Sci 13:2825–2828

    Article  CAS  Google Scholar 

  27. Goradia D, Cooney J, Hodnett BK, Magner E (2005) J Mol Catal B Enzym 32:231–239

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Gómez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez, J.M., Romero, M.D., Fernández, T.M. et al. Immobilization of β-glucosidase in fixed bed reactor and evaluation of the enzymatic activity. Bioprocess Biosyst Eng 35, 1399–1405 (2012). https://doi.org/10.1007/s00449-012-0728-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0728-y

Keywords

Navigation