Skip to main content
Log in

A bioprocess for the production of phytase from Schizophyllum commune: studies of its optimization, profile of fermentation parameters, characterization and stability

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Schizophyllum commune produces phytase through solid-state fermentation using different agroindustrial residues. After optimization of phytase production, a maximal level of phytase (113.7 Units/gram of dry substrate) was obtained in wheat bran based medium containing 5% sucrose, 50% humidity, 7.5% of biomass at 33 °C pH 7.0 during 72 h and a 285% improvement in enzyme titre was achieved. Analysis of fermentation parameters profile for phytase production showed the highest productivity (1.466 Units/gram of dry substrate/hour) in 66 h of fermentation. Phytase has an optimal pH of 5.0, an optimal temperature of 50 °C and K m and V max values of 0.16 mM and 1.85 μmol mL−1 min−1, respectively. Phytase activity was stimulated essentially in the presence of K+, Ca2+, Mg2+, Mn2+, Zn2+, Cu2+, Fe2+, Fe3+, Co2+, Ni2+, acetate and citrate at concentrations of 1 mM. Phytase had the best shelf life when stored at a cooling temperature, maintaining 38% of its initial activity after 112 days of storage, and still presenting enzymatic activity after 125 days of storage. Stability studies of phytase performed in aqueous enzyme extracts showed satisfactory results using polyethyleneglycol 3350, carboxymethylcellulose, methylparaben, mannitol and benzoic acid in concentrations of 0.25, 0.025, 0.025, 0.25, and 0.0025%, respectively. PEG 3350 was shown to be the best stabilizing agent, resulting in 109% of phytase activity from the initial crude extract remaining activity in after 90 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kumari M, Survase SA, Singhal RS (2008) Production of schizophyllan using Schizophyllum commune NRCM. Bioresour Technol 99:1036–1043

    Article  CAS  Google Scholar 

  2. Collopy PD, Royse DJ (2004) Characterization of phytase activity from cultivated edible mushrooms and their production substrates. J Agric Food Chem 52:7518–7524

    Article  CAS  Google Scholar 

  3. Spier MR, Greiner R, Rodriguez-León JA, Woiciechowski AL, Pandey A, Soccol VT, Soccol CR (2008) Phytase production using citric pulp and other residues of the agroindustry in SSF by fungal isolates. Food Technol Biotechnol 46:178–182

    CAS  Google Scholar 

  4. Sandberg AS, Andlid T (2002) Phytogenetic and microbial phytases in human nutrition. Int J Food Sci Technol 37:823–833

    Article  CAS  Google Scholar 

  5. Pandey A, Soccol CR, Mitchell DA (2000) New developments in solid-state fermentation I—bioprocesses and products. Proc Biochem 35:1153–1169

    Article  CAS  Google Scholar 

  6. Sharma A, Vivekanand V, Singh RP (2008) Solid-state fermentation for gluconic acid production from sugarcane molasses by Aspergillus niger ARNU-4 employing tea waste as the novel solid support. Bioresour Technol 99:3444–3450

    Article  CAS  Google Scholar 

  7. Papagianni M, Nokes SE, Foler K (2000) Production of phytase by Aspergillus niger in submerged and solid-state fermentation. Process Biochem 35:397–402

    Article  Google Scholar 

  8. Heinonen JK, Lahti RJ (1981) A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal Biochem 113:313–317

    Article  CAS  Google Scholar 

  9. Somogyi M (1945) A new reagent for the determination of sugars. J Biol Chem 160:61–68

    CAS  Google Scholar 

  10. Nelson NA (1944) A photometric adaptation of the Somogyi method for determination of glucose. J Biol Chem 153:375–380

    CAS  Google Scholar 

  11. Seitz LM, Sauer DB, Burroughs R, Mohr HE, Hubbard JD (1979) Ergosterol as a measure of fungal growth. Phytopathology 69:1202–1203

    Article  CAS  Google Scholar 

  12. El-Gindy AA, Ibrahim ZM, Ali UF, El-Mahdy OM (2009) Extracellular phytase production by solid-state cultures of Malbranchea sulfurea and Aspergillus Niveus on cost-effective medium. Res J of Agric Biol Sci 5:42–62

    CAS  Google Scholar 

  13. Roopesh K, Ramachandran S, Nampoothiri KM, Szakacs G, Pandey A (2006) Comparison of phytase production on wheat bran and oilcakes in solid-state fermentation by Mucor racemosus. Bioresour Technol 97:506–511

    Article  CAS  Google Scholar 

  14. Chantasartrasamee K, Ayuthaya DI, Intarareugsorn S, Dharmsthiti S (2005) Phytase activity from Aspergillus oryzae AK9 cultivated on solid state soybean meal medium. Process Biochem 40:2285–2289

    Article  CAS  Google Scholar 

  15. Chadha BS, Harmeet G, Mandeep M, Saini HS, Singh N (2004) Phytase production by the thermophilic fungus Rhizomucor pusillus. World J Microbiol Biotechnol 20:105–109

    Article  CAS  Google Scholar 

  16. Singh B, Satyanarayana T (2008) Phytase production by a thermophilic mould Sporotrichum thermophile in cost-effective cane molasses medium and its application in bread. J Appl Microbiol 105:1858–1865

    Article  CAS  Google Scholar 

  17. Nigham PS, Pandey A (2009) Biotechnology for agro-industrial residues utilization. In: Pre-treatment of agro-industrial residues, 1st edn. Netherlands, Springer, p 25

  18. Bhavsar K, Ravi Kumar V, Khire JM (2010) High level phytase production by Aspergillus niger NCIM 563 in solid state culture: response surface optimization, up-scaling, and its partial characterization. J Ind Microbiol Biotechnol. doi:10.1007/s10295-010-0926-z

  19. Spier MR, Scheidt G, Portella AC, Rodríguez-León JA, Woiciechowski AL, Greiner R, Soccol CR (2011) Increase in phytase synthesis during citric pulp fermentation. Chem Eng Commun 198:286–297

    Article  CAS  Google Scholar 

  20. Bogar B, Szakacs G, Pandey A, Abdulhameed S, Linden JC, Tengerdy RP (2003) Production of phytase by Mucor racemosus in solid-state fermentation. Biotechnol Prog 19:312–319

    Article  CAS  Google Scholar 

  21. Bogar B, Szakacs G, Linden JC, Pandey A, Tengerdy RP (2003) Optimization of phytase production by solid substrate fermentation. J Ind Microbiol Biotechnol 30:183–189

    CAS  Google Scholar 

  22. Spier MR, Woiciechowski AL, Letti LAJ, Scheidt GN, Sturm W, Rodriguez-León JA, Carvalho JC, Dergint DEA, Soccol CR (2010) Monitoring fermentation parameters during phytase production in column-type bioreactor using a new data acquisition system. Bioprocess Biosyst Eng 33:1033–1041

    Article  CAS  Google Scholar 

  23. Esakkiraj P, Sandoval G, Sankaralingam S, Immanuel G, Palavesam A (2010) Preliminary optimization of solid-state phytase production by moderately halophilic Pseudomonas AP-MSU 2 isolated from fish intestine. Ann Microbiol 60:461–468

    Article  CAS  Google Scholar 

  24. Costa M, Lerchundi G, Villarroel F (2009) Phytase production by Aspergillus ficuum in submerged and solid state fermentation using agroindustrial waste as support. Rev Colomb Biotechnol 11:73–83

    Google Scholar 

  25. Vassilev N, Vassileva M, Bravo V, Fernández-Serrano M, Nikolaeva I (2007) Simultaneous phytase production and rock phosphate solubilization by Aspergillus niger grown on dry olive wastes. Ind Crop Prod 26:332–336

    Article  CAS  Google Scholar 

  26. Sabu A, Sarita S, Pandey A, Bogar B, Szakacs G, Soccol CR (2002) Solid-state fermentation for production of phytase by Rhizopus oligosporus. Appl Biochem Biotechnol 102–103:251–260

    Article  Google Scholar 

  27. Spier MR, Letti LA, Woiciechowski AL, Soccol CR (2009) A simplified model for A. niger FS3 growth during phytase formation in solid state fermentation. Braz Arch Biol Technol 52:151–158

    Article  Google Scholar 

  28. Kaur O, Satyanarayana T (2005) Production of cell-bound phytase by Pichia anomala in an economical cane molasses medium: optimization using statistical tools. Process Biochem 40:3095–3102

    Article  CAS  Google Scholar 

  29. Vats P, Banerjee UC (2002) Studies on the production of phytase by a newly isolated strain of Aspergillus niger var teigham obtained from rotten wood-logs. Process Biochem 38:211–217

    Article  CAS  Google Scholar 

  30. Casey A, Walsh G (2003) Purification and characterization of extracellular phytase from Aspergillus niger ATCC 9142. Bioresour Technol 86:183–188

    Article  CAS  Google Scholar 

  31. Spier MR, Fendrich R, Almeida P, Noseda M, Greiner R, Konietzny U, Woiciechowski A, Soccol VT, Soccol CR (2010) Phytase produced on citric byproducts: purification and characterization. World J Microbiol Biotechnol 27:267–274

    Article  Google Scholar 

  32. Vohra A, Satyanarayana T (2003) Phytases: microbial sources, production, purification, and potential biotechnological applications. Crit Rev Biotechnol 23:29–60

    Article  CAS  Google Scholar 

  33. Casey A, Walsh G (2004) Identification and characterization of a phytase of potential commercial interest. J Biotechnol 110:313–322

    Article  CAS  Google Scholar 

  34. Konietzny U, Greiner R (2002) Molecular and catalytic properties of phytate-degrading enzymes (phytases). Int J Food Sci Technol 37:791–812

    Article  CAS  Google Scholar 

  35. Boyce A, Walsh G (2007) Purification and characterisation of an acid phosphatase with phytase activity from Mucor hiemalis Wehmer. J Biotechnol 132:82–87

    Article  CAS  Google Scholar 

  36. Woodzinski RJ, Ullah AHJ (1996) Biochemical characterization of cloned Aspergillus fumigatus phytase (phyA). Adv Appl Microbiol 42:263–302

    Article  Google Scholar 

  37. Shimizu M (1993) Purification and characterization of phytase and acid phosphatase produced by Aspergillus oryzae K1. Biosci Biotechnol Biochem 57:1354–1365

    Google Scholar 

  38. Dvoràkovà O, Volfovà J, Kopecky J (1997) Characterization of phytase produced by Aspergillus niger. Folia Microbiol 42:349–352

    Article  Google Scholar 

  39. Quan C, Zhang L, Wang Y, Ohta Y (2001) Production of phytase in a low phosphate medium by a novel yeast Candida krusei. J Biosci Bioeng 92:154–160

    CAS  Google Scholar 

  40. Van Staden J, Denhaan R, Van Zyl WH, Botha A, Viljoen-Bloom M (2007) Phytase activity in Cryptococcus laurentii ABO 510. FEMS Yeast Res 7:442–448

    Article  Google Scholar 

  41. Beal L, Mehta T (2006) Zinc and phytate distribution in peas. Influence of heat treatment, germination, pH, substrate, and phosphorus on pea phytate and phytase. J Food Sci 50:96–100

    Article  Google Scholar 

  42. Yang W-J, Kim K-W (1994) Kinetic properties of rat intestinal phytase/alkaline phosphatase. Korean Biochem J 27:342–345

    CAS  Google Scholar 

  43. Ullah AHJ (1988) Production, rapid purification and catalytic characterization of extracellular phytase from Aspergillus ficuum. Prep Biochem 18:443–458

    Article  CAS  Google Scholar 

  44. Greiner R (2004) Purification and properties of a phytate-degrading enzyme from Pantoea agglomerans. Protein J. 23:567–576

    Article  CAS  Google Scholar 

  45. Greiner R, Konietzny U, Jany KD (1997) Purification and properties of a phytase from rye. J Food Biochem 22:143–161

    Article  Google Scholar 

  46. Tadashi N, Satoshi K, Tadanori Y, Hideharu A, Yoko K, Seiji S, Keiichi Y (2001) Phytase having a low michaelis constant for phytic acid from Monascus. US Patent 6261592. http://www.freepatentsonline.com/6261592.html. Accessed 06 Jun 2010

  47. Sri-Akkharin W (2004) Production and characterization of extracellular phytase from Pseudomonas sp. Thesis, degree of master of science biotechnology, Faculty of Graduate Studies of Mahidol University, Bangkok

  48. Soni SK, Magdum A, Khire JM (2010) Purification and characterization of two distinct acidic phytases with broad pH stability from Aspergillus niger NCIM 563. World J Microbiol Biotechnol 26:2009–9018

    Article  CAS  Google Scholar 

  49. Fu D, Huang H, Luo H, Wang Y, Yang P, Meng K, Bay Y, Wu N, Yao B (2008) A highly pH stable phytase from Yersinia kristensenii: cloning, expression, and characterization. Enzyme Microb Technol 42:499–505

    Article  CAS  Google Scholar 

  50. Nair VC, Laflamme J, Duvnjak Z (2006) Production of phytase by Aspergillus ficuum and reduction of phytic acid content in canola meal. J Sci Food Agric 54:355–365

    Article  Google Scholar 

  51. Brugger R, Nunes CS, Hug D, Vogel K, Guggenbhul P, Mascarello F, Augem S, Wyss M, Van Loon APGM, Pasamontes L (2004) Characteristics of fungal phytases from Aspergillus fumigatus and Sartorya fumigata. Appl Microbiol Biotechnol 63:383–389

    Article  CAS  Google Scholar 

  52. Health and Consumer Protection Directorate-General, Directorate B—Scientific Health Opinions, Unit B3—Management of scientific committees II Opinion of the SCAN on the use of enzymatic product Natuphos® 5000 (3-phytase; EC 3.1.3.8) as feed additive http://ec.europa.eu/food/fs/sc/scan/out44_en.pdf. Accessed 20 Jun 2010

  53. Costa SA, Tzanova T, Carneiro AF, Paar A, Gübitz GM, Cavavo-Paulo A (2002) Studies of stabilization of native catalase using additives. Enzyme Microb Technol 30:387–391

    Article  CAS  Google Scholar 

  54. Michiaki M, Koji K, Kazuo K (1997) Effects of polyols and organic solvents on thermostability of lipase. J Chem Technol Biotechnol 70:188–192

    Article  Google Scholar 

  55. Longo MA, Combes D (1999) Thermostability of modified enzymes: a detailed study. J Chem Technol Biotechnol 74:25–32

    Article  CAS  Google Scholar 

  56. Wang W (1999) Instability, stabilization, and formulation of liquid protein pharmaceuticals Int. J. Pharm 185:129–188

    CAS  Google Scholar 

  57. Iyer PV, Ananthanarayan L (2008) Enzyme stability and stabilization—aqueous and nonaqueous environment. Process Biochem 43:1019–1032

    Article  CAS  Google Scholar 

  58. Rowe RC, Sheskey PJ, Owen SC (2005) Handbook of pharmaceutical excipients, 5th edn. APhA Publications, Washington

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Council of Technological and Scientific Development (CNPq) for financial resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Rigon Spier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salmon, D.N.X., Piva, L.C., Binati, R.L. et al. A bioprocess for the production of phytase from Schizophyllum commune: studies of its optimization, profile of fermentation parameters, characterization and stability. Bioprocess Biosyst Eng 35, 1067–1079 (2012). https://doi.org/10.1007/s00449-012-0692-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0692-6

Keywords

Navigation