Skip to main content
Log in

Lycopene production from synthetic medium by Blakeslea trispora NRRL 2895 (+) and 2896 (−) in a stirred-tank fermenter

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The dissolved oxygen tension of 20% of air saturation, pH-shift from 4.0 to 5.5 on day 3, and a moderate shear stress (calculated as an impeller tip speed, \( V_{\text{tip}} = 0. 9 2 6- 2. 1 6 1 \, {\text{m}}/{\text{s}} \)) were identified to be the key factors in scaling-up the mated fermentation of Blakeslea trispora NRRL 2895 (+) and 2896 (−) for lycopene production from a shake flask to a stirred-tank fermenter. The maximal lycopene production of 183.3 mg/L was obtained in 7.5-L stirred-tank fermenter, and then the mated fermentation process was successfully step-wise scaled-up from 7.5- to 200-L stirred-tank fermenter. The comparability of the fermentation process was well controlled and the lycopene production was maintained during the process scale-up. Furthermore, with the integrated addition of 150 μmol/L abscisic acid on day 3, 0.5 g/L leucine and 0.1 g/L penicillin on day 4, the highest lycopene production of 270.3 mg/L was achieved in the mated fermentation of B. trispora in stirred-tank fermenter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Palozza P, Colangelo M, Simone R, Catalano A, Boninsegna A, Lanza P, Monego A, Ranelletti FO (2010) Lycopene induces cell growth inhibition by altering mevalonate pathway and Ras signaling in cancer cell lines. Carcinogenesis 31(10):1813–1821

    Article  CAS  Google Scholar 

  2. Huang CS, Liao JW, Hu ML (2008) Lycopene inhibits experimental metastasis of human hepatoma SK-Hep-1 cells in athymic nude mice. J Nutr 138:538–543

    Google Scholar 

  3. Tang FY, Shih CJ, Cheng LH, Ho HJ, Chen HJ (2008) Lycopene inhibits growth of human colon cancer cells via suppression of the Akt signaling pathway. Mol Nutr Food Res 52:646–654

    Article  CAS  Google Scholar 

  4. Rao AV (2002) Lycopene, tomatoes, and the prevention of coronary heart disease. Exp Biol Med 227:908–913

    CAS  Google Scholar 

  5. Bansal P, Gupta SK, Ojha SK, Nandave M, Mittal R, Kumari S, Arya DS (2006) Cardioprotective effect of lycopene in the experimental model of myocardial ischemia-reperfusion injury. Mol Cell Biochem 289:1–9

    Article  CAS  Google Scholar 

  6. Rao LG, Mackinnon ES, Josse RG, Murray TM, Strauss A, Rao AV (2007) Lycopene consumption decreases oxidative stress and bone resorption markers in postmenopausal women. Osteoporosis Int 18:109–115

    Article  CAS  Google Scholar 

  7. Watzl B, Bub A, Brandstetter BR, Rechkemmer G (1999) Modulation of human T-lymphocyte functions by the consumption of carotenoid-rich vegetables. British J Nutr 82:383–389

    CAS  Google Scholar 

  8. Liu QN, Zhu LW, Wang YH, Li DS, Wan DJ, Tang YJ (2009) Advance on the production of lycopene by microbial fermentation. Food Ferment Ind 35(6):157–161 (In Chinese)

    Google Scholar 

  9. Mehta BJ, Obraztsova IN, Cerdá-Olmedo E (2003) Mutants and intersexual heterokaryons of Blakeslea trispora for production of β-carotene and lycopene. Appl Environ Microbiol 69:4043–4048

    Article  CAS  Google Scholar 

  10. Bianchi ML, Francheschi G, Marnati MP, Spalla C (1969) Microbiological process for the production of lycopene. US patent 3,467,579

  11. Miura Y, Kondo K, Saito T, Shimada H, Fraser PD, Misawa N (1998) Production of the carotenoids lycopene, β-carotene, and astaxanthin in the food yeast Candida utilis. Appl Environ Microbiol 64:1226–1229

    CAS  Google Scholar 

  12. Murillo FJ, Calderόn IL, Lόpez-Díaz I, Cerdá-Olmedo E (1978) Carotene-superproducing strains of Phycomyces. Appl Environ Microbiol 36:639–642

    CAS  Google Scholar 

  13. Hohmann HP, Pasamontes L, Tessier M, van Loon A (2000) Fermentative carotenoid production. US patent 6,124,113

  14. Alper H, Miyaoku K, Stephanopoulos G (2005) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23(5):612–616

    Article  CAS  Google Scholar 

  15. Choudhari SM, Ananthanarayan L, Singhal RS (2008) Use of metabolic stimulators and inhibitors for enhanced production of β-carotene and lycopene by Blakeslea trispora NRRL 2895 and 2896. Bioresour Technol 99:3166–3173

    Article  CAS  Google Scholar 

  16. Mantzouridou F, Tsimidou MZ (2008) Lycopene formation in Blakeslea trispora chemical aspects of a bioprocess. Trends Food Sci Technol 19:363–371

    Article  CAS  Google Scholar 

  17. Choudhari S, Singhal R (2008) Media optimization for the production of β-carotene by Blakeslea trispora: a statistical approach. Bioresour Technol 99:722–730

    Article  CAS  Google Scholar 

  18. Mantzouridou F, Roukas T, Kotzekidou P (2002) Effect of the aeration rate and agitation speed on β-carotene production and morphology of Blakeslea trispora in a stirred tank reactor: mathematical modeling. Biochem Eng J 10:123–135

    Article  CAS  Google Scholar 

  19. Nanou K, Roukas T, Kotzekidou P (2007) Role of hydrolytic enzymes and oxidative stress in autolysis and morphology of Blakeslea trispora during β-carotene production in submerged fermentation. Appl Environ Microbiol 74:447–453

    CAS  Google Scholar 

  20. Wang JF, Liu XJ, Liu RS, Li HM, Tang YJ (2011) Optimization of the mated fermentation process for the production of lycopene by Blakeslea trispora NRRL 2895 (+) and NRRL 2896 (−). Biopro Biosys Eng. doi: 10.1007/s00449-011-0628-6

  21. Lόpez-Nieto MJ, Costa J, Peiro E, Méndez E, Rodríguez-Sáiz M, De la Fuente JL, Cabri W, Barredo JL (2004) Biotechnological lycopene production by mated fermentation of Blakeslea trispora. Appl Microbiol Biotechnol 66:153–159

    Article  Google Scholar 

  22. Tang YJ, Zhang W, Liu RS, Zhu LW, Zhong JJ (2011) Scale-up study on the fed-batch fermentation of Ganoderma lucidum for the hyperproduction of ganoderic acid and Ganoderma polysaccharides. Process Biochem 46:404–408

    Article  CAS  Google Scholar 

  23. Tang YJ, Zhang W, Zhong JJ (2009) Performance analyses of a pH-shift and DOT-shift integrated fed-batch fermentation process for the production of ganoderic acid and Ganoderma polysaccharides by medicinal mushroom Ganoderma lucidum. Bioresour Technol 100:1852–1859

    Article  CAS  Google Scholar 

  24. Xu F, Yuan QP, Dong HR (2006) Determination of lycopene and β-carotene by high-performance liquid chromatography using Sudan I as internal standard. J Chromatogr B 838:44–49

    Article  CAS  Google Scholar 

  25. Jüsten P, Paul G, Nienow A, Thomas C (1996) Dependence of mycelial morphology on impeller type and agitation intensity. Biotechnol Bioeng 52:634–648

    Article  Google Scholar 

  26. Paul G, Thomas C (1998) Characterization of mycelial morphology using image analysis. Adv Biochem Eng Biotechnol 60:1–59

    Article  CAS  Google Scholar 

  27. Tucker K, Kelly T, Delgrazia P, Thomas C (1992) Fully-automatic measurement of mycelial morphology by image analysis. Biotechnol Prog 8:353–359

    Article  CAS  Google Scholar 

  28. Yang JD, Lu C, Stasny B, Henley J, Guinto W, Gonzalez C, Gleason J, Fung M, Collopy B, Benjamino M, Gangi J, Hanson M, Ille E (2007) Fed-batch bioreactor process scale-up from 3-L to 2, 500-L scale for monoclonal antibody production from cell culture. Biotechnol Bioeng 98(1):141–154

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (NSFC, Project Nos. 20976038 and 21176059), the Key Project of Chinese Ministry of Education (Project No. 210132), Hubei Provincial Natural Science Foundation for Innovative Research Team (Project No. 2008CDA002), Scientific Research Key Project of Hubei Provincial Department of Education (Project No. Z20101401), Discipline Leader Project of Wuhan Municipality (Project No. 200951830553), Key Technology R&D Program of Wuhan Municipality (Project No. 201120822280-2), the Open Project Programs for the Key Laboratory of Fermentation Engineering (Ministry of Education), the National Key Laboratory of Biochemical Engineering (Project No. 2010KF-06), and the State Key Laboratory of Bioreactor Engineering are gratefully acknowledged. Ya-Jie Tang also thanks the Chutian Scholar Program (Hubei Provincial Department of Education, China) (2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Jie Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, XJ., Liu, RS., Li, HM. et al. Lycopene production from synthetic medium by Blakeslea trispora NRRL 2895 (+) and 2896 (−) in a stirred-tank fermenter. Bioprocess Biosyst Eng 35, 739–749 (2012). https://doi.org/10.1007/s00449-011-0654-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-011-0654-4

Keywords

Navigation