Skip to main content
Log in

Kinetic Study of Lasiodiplodan Production by Lasiodiplodia theobromae MMPI in a Low-Shear Aerated and Agitated Bioreactor

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Little information is available in the literature concerning the kinetics of the production of exopolysaccharides (EPS). The kinetics of growth, substrate consumption and lasiodiplodan (LAS) production by the filamentous fungus Lasiodiplodia theobromae MMPI were studied in a new bioreactor design (Low-Shear Aerated and Agitated Bioreactor; LSAAB) using media based on glucose and glycerol. The kinetic parameters of cultivation were compared with fermentations conducted in a stirred tank bioreactor (STR) and in shake flasks. Cultivation in LSAAB using glucose resulted in 3.17 ± 0.16 g.L−1 of LAS, a value lower than that obtained in shake-flasks (6.49 ± 0.03 g.L−1), but somewhat higher than obtained in STR (0.70 ± 0.12 g.L−1). When glycerol was used as substrate, the production of LAS was less effective than glucose. From the fungal biomass produced, as well as the related growth kinetic parameters (YX/S and QX), fungal growth was more efficient in LSAAB. Lasiodiplodan production by L. theobromae MMPI from glycerol was accelerated by an increase in broth pH during cultivation, and the behavior was opposite (decreased pH) when using glucose. LSAAB proved to be promising for the production of LAS by the fungus studied. Although glucose was shown to be the better substrate for the production of LAS, glycerol, as a fermentation substrate, has potential of a less-expensive medium for cultivating the fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thombare N, Jha U, Mishra S, Siddiqui MZ (2016) Guar gum as a promising starting material for diverse applications: a review. Int J Biol Macromol 88:361–372. https://doi.org/10.1016/j.ijbiomac.2016.04.001

    Article  CAS  PubMed  Google Scholar 

  2. Kumar A, Rao KM, Han SS (2018) Application of xanthan gum as polysaccharide in tissue engineering: a review. Carbohydr Polym 180:128–144. https://doi.org/10.1016/j.carbpol.2017.10.009

    Article  CAS  PubMed  Google Scholar 

  3. Nagi M (2018) Global Biopolymers market to witness a CAGR of 15.2% during 2018–2024: Energias market research Pvt. Ltd. https://www.globenewswire.com/news-release/2018/07/11/1535796/0/en/Global-Biopolymers-Market-to-witness-a-CAGR-of-15-2-during-2018-2024-Energias-Market-Research-Pvt-Ltd.html. Accessed 17 Dec 2019

  4. Baldassano S, Accardi G, Vasto S (2017) Beta-glucans and cancer: the influence of inflammation and gut peptide. Eur J Med Chem 142:486–492. https://doi.org/10.1016/j.ejmech.2017.09.013

    Article  CAS  PubMed  Google Scholar 

  5. Bozbulut R, Sanlier N (2019) Promising effects of β-glucans on glycemic control in diabetes. Trends Food Sci Technol 83:159–166. https://doi.org/10.1016/j.tifs.2018.11.018

    Article  CAS  Google Scholar 

  6. Han F, Fan H, Yao M et al (2017) Oral administration of yeast β-glucan ameliorates inflammation and intestinal barrier in dextran sodium sulfate-induced acute colitis. J Funct Foods 35:115–126. https://doi.org/10.1016/j.jff.2017.05.036

    Article  CAS  Google Scholar 

  7. Orlandelli RC, Corradi da Silva M, de L, Vasconcelos AFD, et al (2017) β-(1→3,1→6)-D-glucans produced by Diaporthe sp. endophytes: Purification, chemical characterization and antiproliferative activity against MCF-7 and HepG2-C3A cells. Int J Biol Macromol 94:431–437. https://doi.org/10.1016/j.ijbiomac.2016.10.048

    Article  CAS  PubMed  Google Scholar 

  8. Bohn JA, BeMiller JN (1995) (1→3)-β-D-Glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydr Polym 28:3–14. https://doi.org/10.1016/0144-8617(95)00076-3

    Article  CAS  Google Scholar 

  9. Grand View Research (2020) Beta-glucan Market Size, Share & Trends Analysis Report By Source (Cereal, Mushroom, Yeasts, Seaweed), By Application (F&B, Personal Care, Pharmaceuticals, Animal Feed), By Type, By Region, And Segment Forecasts, 2018 - 2025. https://www.grandviewresearch.com/industry-analysis/beta-glucan-market. Accessed 17 Jun 2020

  10. Osińska-Jaroszuk M, Jarosz-Wilkołazka A, Jaroszuk-Ściseł J et al (2015) Extracellular polysaccharides from Ascomycota and Basidiomycota: production conditions, biochemical characteristics, and biological properties. World J Microbiol Biotechnol 31:1823–1844. https://doi.org/10.1007/s11274-015-1937-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kagimura FY, Da Cunha MAA, Theis TV et al (2015) Carboxymethylation of (1→6)-β-glucan (lasiodiplodan): preparation, characterization and antioxidant evaluation. Carbohydr Polym 127:390–399. https://doi.org/10.1016/j.carbpol.2015.03.045

    Article  CAS  PubMed  Google Scholar 

  12. Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr Mar Biol Ann Rev 28:73–153

    Google Scholar 

  13. Sutherland IW (1979) Microbial exopolysaccharides. Trends Biochem Sci 4:55–59. https://doi.org/10.1016/0968-0004(79)90262-7

    Article  CAS  Google Scholar 

  14. Vasconcelos AFD, Monteiro NK, Dekker RFH et al (2008) Three exopolysaccharides of the β-(1→6)-D-glucan type and a β-(1→3;1→6)-D-glucan produced by strains of Botryosphaeria rhodina isolated from rotting tropical fruit. Carbohydr Res 343:2481–2485. https://doi.org/10.1016/j.carres.2008.06.013

    Article  CAS  PubMed  Google Scholar 

  15. Úrbez-Torres JR, Leavitt GM, Guerrero JC et al (2008) Identification and pathogenicity of Lasiodiplodia theobromae and Diplodia seriata, the causal agents of bot canker disease of Grapevines in Mexico. Plant Dis 92:519–529. https://doi.org/10.1094/PDIS-92-4-0519

    Article  PubMed  Google Scholar 

  16. Fesel PH, Zuccaro A (2016) β-glucan: Crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genet Biol 90:53–60. https://doi.org/10.1016/j.fgb.2015.12.004

    Article  CAS  PubMed  Google Scholar 

  17. Corradi da Silva M, de L, Fukuda EK, Vasconcelos AFD, et al (2008) Structural characterization of the cell wall D-glucans isolated from the mycelium of Botryosphaeria rhodina MAMB-05. Carbohydr Res 343:793–798. https://doi.org/10.1016/j.carres.2007.12.021

    Article  CAS  Google Scholar 

  18. Cunha MAA, Turmina JA, Ivanov RC et al (2012) Lasiodiplodan, an exocellular (1→6)-β-D-glucan from Lasiodiplodia theobromae MMPI: Production on glucose, fermentation kinetics, rheology and anti-proliferative activity. J Ind Microbiol Biotechnol 39:1179–1188. https://doi.org/10.1007/s10295-012-1112-2

    Article  CAS  Google Scholar 

  19. Seviour RJ, Stasinopoulos SJ, Auer DPF, Gibbs PA (1992) Production of pullulan and other exopolysaccharides by filamentous fungi. Crit Rev Biotechnol 12:279–298. https://doi.org/10.3109/07388559209069196

    Article  CAS  Google Scholar 

  20. Abad S, Turon X (2012) Valorization of biodiesel derived glycerol as a carbon source to obtain added-value metabolites: Focus on polyunsaturated fatty acids. Biotechnol Adv 30:733–741. https://doi.org/10.1016/j.biotechadv.2012.01.002

    Article  CAS  PubMed  Google Scholar 

  21. Seviour RJ, McNeil B, Fazenda ML, Harvey LM (2011) Operating bioreactors for microbial exopolysaccharide production. Crit Rev Biotechnol 31:170–185. https://doi.org/10.3109/07388551.2010.505909

    Article  CAS  PubMed  Google Scholar 

  22. Prata AMR, Ferraz AL, Domingos M, Silva Junior JM, 2011. Biorreator com sistema de agitação e aeração específico para cultivo de células aderentes e/ou sensíveis ao cisalhamento. BR Patent PI 1003119–7I.

  23. Domingos M, de Souza-Cruz PB, Ferraz A, Prata AMR (2017) A new bioreactor design for culturing basidiomycetes: mycelial biomass production in submerged cultures of Ceriporiopsis subvermispora. Chem Eng Sci 170:670–676. https://doi.org/10.1016/j.ces.2017.04.004

    Article  CAS  Google Scholar 

  24. Saldanha RL, Garcia JE, Dekker RFH et al (2007) Genetic diversity among Botryosphaeria isolates and their correlation with cell wall-lytic enzyme production. Brazilian J Microbiol 38:259–264. https://doi.org/10.1590/S1517-83822007000200013

    Article  Google Scholar 

  25. Vogel HJ (1956) A convenient growth medium for Neurospora crassa. Microbial Genet Bull 13:42–43

    Google Scholar 

  26. Steluti RM, Giese EC, Piggato MM et al (2004) Comparison of Botryosphaeran production by the ascomyceteous fungus Botryosphaeria sp., grown on different carbohydrate carbon sources, and their partial structural features. J Basic Microbiol 44:480–486. https://doi.org/10.1002/jobm.200410415

    Article  CAS  PubMed  Google Scholar 

  27. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  28. Dubois M, Gilles KA, Hamilton JK et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem. https://doi.org/10.1021/ac60111a017

    Article  Google Scholar 

  29. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  30. Jarman TR, Pace GW (1984) Energy requirements for microbial exopolysaccharide synthesis. Arch Microbiol 137:231–235. https://doi.org/10.1007/BF00414549

    Article  CAS  Google Scholar 

  31. Nampoothiri KM, Singhania RR, Sabarinath C, Pandey A (2003) Fermentative production of gellan using Sphingomonas paucimobilis. Process Biochem 38:1513–1519. https://doi.org/10.1016/S0032-9592(02)00321-7

    Article  CAS  Google Scholar 

  32. Torres CAV, Marques R, Ferreira ARV et al (2014) Impact of glycerol and nitrogen concentration on Enterobacter A47 growth and exopolysaccharide production. Int J Biol Macromol 71:81–86. https://doi.org/10.1016/j.ijbiomac.2014.04.012

    Article  CAS  PubMed  Google Scholar 

  33. Lazaridou A, Roukas T, Biliaderis CG, Vaikousi H (2002) Characterization of pullulan produced from beet molasses by Aureobasidium pullulans in a stirred tank reactor under varying agitation. Enzyme Microb Technol 31:122–132. https://doi.org/10.1016/S0141-0229(02)00082-0

    Article  CAS  Google Scholar 

  34. Barroso CB, Nahas E (2005) The status of soil phosphate fractions and the ability of fungi to dissolve hardly soluble phosphates. Appl Soil Ecol 29:73–83. https://doi.org/10.1016/j.apsoil.2004.09.005

    Article  Google Scholar 

  35. Mahapatra S, Banerjee D (2013) Fungal exopolysaccharide: production, composition and applications. Microbiol Insights 6:1–16. https://doi.org/10.4137/mbi.s10957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Giese EC, Dekker RFH, Scarminio IS et al (2011) Comparison of β-1,3-glucanase production by Botryosphaeria rhodina MAMB-05 and Trichoderma harzianum Rifai and its optimization using a statistical mixture-design. Biochem Eng J 53:239–243. https://doi.org/10.1016/j.bej.2010.10.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thanks to Universidade de São Paulo (USP) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie C. T. Tabuchi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 287 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabuchi, S.C.T., Martiniano, S.E., Cunha, M.A.A. et al. Kinetic Study of Lasiodiplodan Production by Lasiodiplodia theobromae MMPI in a Low-Shear Aerated and Agitated Bioreactor. J Polym Environ 29, 89–102 (2021). https://doi.org/10.1007/s10924-020-01857-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01857-x

Keywords

Navigation