Skip to main content
Log in

Polycationic amino acid tags enhance soluble expression of Candida antarctica lipase B in recombinant Escherichia coli

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Lipase (EC 3.1.1.3) is a popular enzyme used as an ingredient in detergents and biocatalyst in many biochemical reactions. Lipase is usually expressed in Escherichia coli as an inactive inclusion body and at a low level. In this study, Candida antarctica lipase B (CalB) was fused with various polycationic amino acid tags and expressed in E. coli in order to increase a soluble expression level. By induction with 1.0 mM IPTG, the authentic and fused CalBs were expressed at 27–56% of total protein. The 10-arginine and 10-lysine tags fused at the C-terminal of CalB significantly increased the solubility of CalB by five- to ninefold, relative to the case of the authentic CalB expressed in a recombinant E. coli Origami 2TM (DE3) strain. Among a series of the C-terminal poly-arginine tags, the recombinant CalB combined with the 10-arginine tag (CalB-R10) possessed the highest lipase specific activity of 9.5 ± 0.03 U/mg protein, corresponding to a fourfold enhancement compared with the authentic CalB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schmid RD, Verger R (1998) Lipases: interfacial enzymes with attractive applications. Angew Chem Int Ed 37:1608–1633

    Article  Google Scholar 

  2. Blank K, Morfill J, Gumpp H, Gaub HE (2006) Functional expression of Candida antarctica lipase B in Eschericha coli. J Biotechnol 125:474–483

    Article  CAS  Google Scholar 

  3. Hoegh I, Patkar S, Halkier T, Hansen MT (1995) Two lipases from Candida antarctica: cloning and expression in Aspergillus oryzae. Can J Bot 73:S869–S875

    Article  CAS  Google Scholar 

  4. Rotticci D, Rotticci-Mulder JC, Denman S, Norin T, Hult K (2001) Improved enantioselectivity of a lipase by rational protein engineering. ChemBioChem 2:766–770

    Article  CAS  Google Scholar 

  5. Zhang N, Suen WC, Windsor W, Xiao L, Madison V, Zaks A (2003) Improving tolerance of Candida antarctica lipase B towards irreversible thermal inactivation through directed evolution. Protein Eng 16:599–605

    Article  CAS  Google Scholar 

  6. Park HJ, Kim YH (2009) Functional expression of Candida antarctica lipase A in Pichia pastoris and Escherichia coli. Kor J Biotechnol Bioeng 24:341–346

    Google Scholar 

  7. Liu D, Schmid R, Rusnak M (2006) Functional expression of Candida antarctica lipase B in the Escherichia coli cytoplasm—a screening system for a frequently used biocatalyst. Appl Microbiol Biotechnol 72:1024–1032

    Article  CAS  Google Scholar 

  8. Seo HS, Kim SE, Han KY, Park JS, Kim YH, Sim SJ, Jw Lee (2009) Functional fusion mutant of Candida antarctica lipase B (CalB) expressed in Escherichia coli. Biochim Biophys Acta 1794:519–525

    CAS  Google Scholar 

  9. Esposito D, Chatterjee DK (2006) Enhancement of soluble protein expression through the use of fusion tags. Curr Opin Biotech 17:353–358

    Article  CAS  Google Scholar 

  10. Kato A, Maki K, Ebina T, Kuwajima K, Soda K, Kuroda Y (2007) Mutational analysis of protein solubility enhancement using short peptide tags. Biopolymers 85:12–18

    Article  CAS  Google Scholar 

  11. Ashraf SS, Benson RE, Payne ES, Halbleib CM, Gr H (2004) A novel multi-affinity tag system to produce high levels of soluble and biotinylated proteins in Escherichia coli. Protein Expr Purif 33:238–245

    Article  CAS  Google Scholar 

  12. Kim S-G, Kim J-A, Yu H-A, Lee D-H, Kweon D-H, Seo J-H (2006) Application of poly-arginine fused minichaperone to renaturation of cyclodextrin glycosyltransferase expressed in recombinant Escherichia coli. Enzyme Microb Technol 39:459–465

    Article  CAS  Google Scholar 

  13. Kweon DH, Kim SG, Han NS, Lee JH, Chung KM, Seo JH (2005) Immobilization of Bacillus macerans cyclodextrin glycosyltransferase fused with poly-lysine using cation exchanger. Enzyme Microb Technol 36:571–578

    Article  CAS  Google Scholar 

  14. Lee DH, Kim SG, Kweon DH, Seo JH (2009) Folding machineries displayed on a cation-exchanger for the concerted refolding of cysteine- or proline-rich proteins. BMC Biotechnol 9:27

    Article  Google Scholar 

  15. Lee DH, Lee YJ, Ryu YW, Seo JH (2010) Molecular cloning and biochemical characterization of a novel erythrose reductase from Candida magnoliae JH110. Microb Cell Fac 9:43

    Google Scholar 

  16. Jung SM, Park YC, Park KM (2010) Effects of environmental conditions and methanol feeding strategy on lipase-mediated biodiesel production using soybean oil. Biotechnol Bioprocess Eng 15:614–619

    Article  CAS  Google Scholar 

  17. Prinz WA, Åslund F, Holmgren A, Beckwith J (1997) The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem 272:15661–15667

    Article  CAS  Google Scholar 

  18. Xu Y, Yasin A, Tang R, Scharer J, Moo-Young M, Chou C (2008) Heterologous expression of lipase in Escherichia coli is limited by folding and disulfide bond formation. Appl Microbiol Biotechnol 81:79–87

    Article  CAS  Google Scholar 

  19. Smith JC, Derbyshire RB, Cook E, Dunthorne L, Viney J, Brewer SJ, Sassenfeld HM, Bell LD (1984) Chemical synthesis and cloning of a poly(arginine)-coding gene fragment designed to aid polypeptide purification. Gene 32:321–327

    Article  CAS  Google Scholar 

  20. Hossain MA, Belgi A, Lin F, Zhang S, Shabanpoor F, Chan L, Belyea C, Truong H-T, Blair AR, Andrikopoulos S, Tregear GW, Wade JD (2009) Use of a temporary “solubilizing” peptide tag for the FMOC solid-phase synthesis of human insulin glargine via use of regioselective disulfide bond formation. Bioconjugate Chem 20:1390–1396

    Article  CAS  Google Scholar 

  21. Jung S, Park S (2008) Improving the expression yield of Candida antarctica lipase B in Escherichia coli by mutagenesis. Biotechnol Lett 30:717–722

    Article  CAS  Google Scholar 

  22. Qing G, Ma L-C, Khorchid A, Swapna GVT, Mal TK, Takayama MM, Xia B, Phadtare S, Ke H, Acton T, Montelione GT, Ikura M, Inouye M (2004) Cold-shock induced high-yield protein production in Escherichia coli. Nat Biotech 22:877–882

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program (2010-0015928) through the National Research Foundation of Korea (NRF), and the Advanced Biomass R&D Center (ABC) of Korea Grant (2010-0029799) funded by the Ministry of Education, Science and Technology, and in part by the new faculty research program 2009 of Kookmin University in Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Cheol Park or Jin-Ho Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, HJ., Kim, SK., Min, WK. et al. Polycationic amino acid tags enhance soluble expression of Candida antarctica lipase B in recombinant Escherichia coli . Bioprocess Biosyst Eng 34, 833–839 (2011). https://doi.org/10.1007/s00449-011-0533-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-011-0533-z

Keywords

Navigation