Skip to main content
Log in

Production of fibrolytic enzymes by Aspergillus japonicus C03 using agro-industrial residues with potential application as additives in animal feed

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Solid-state fermentation obtained from different and low-cost carbon sources was evaluated to endocellulases and endoxylanases production by Aspergillus japonicus C03. Regarding the enzymatic production the highest levels were observed at 30 °C, using soy bran added to crushed corncob or wheat bran added to sugarcane bagasse, humidified with salt solutions, and incubated for 3 days (xylanase) or 6 days (cellulase) with 70% relative humidity. Peptone improved the xylanase and cellulase activities in 12 and 29%, respectively. The optimum temperature corresponded to 60 °C and 50–55 °C for xylanase and cellulase, respectively, both having 4.0 as optimum pH. Xylanase was fully stable up to 40 °C, which is close to the rumen temperature. The enzymes were stable in pH 4.0–7.0. Cu++ and Mn++ increased xylanase and cellulase activities by 10 and 64%, respectively. A. japonicus C03 xylanase was greatly stable in goat rumen fluid for 4 h during in vivo and in vitro experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Person I, Tjerneld F, Hahn-Hägerdal B (1990) Fungal cellulolytic enzyme production. Process Biochem 26:65–74

    Article  Google Scholar 

  2. Zhang YH, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Review Biotechnol Adv 24:452–455

    Article  CAS  Google Scholar 

  3. Magge RJ, Kosaric M (1985) Bioconversion of hemicellulose. Adv Biochem Eng Biotech 32:61–93

    Google Scholar 

  4. Ferreira-Filho EX, Puls J, Coughalan MP (1993) Biochemical characteristics of two endo-1, 4-β-d-xylanases isolated from solid state cultures of Penicillium capsulatum. J Ind Microbiol 11:171–180

    Article  CAS  Google Scholar 

  5. Da Silva R, Lago ES, Merheb CW, Macchione MM, Park YK, Gomes E (2005) Production of xylanase and CMCase on solid state fermentation in different residues by Thermoascus aurantiascus miehe. Braz J Microbiol 36:235–241

    CAS  Google Scholar 

  6. Pandey A, Silvakumar P, Soccol CR, Nigan P (1999) Solid state fermentation for the production of industrial enzymes. Cur Sci 77:149–162

    CAS  Google Scholar 

  7. Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84

    Article  CAS  Google Scholar 

  8. Bhanu Prakash GVS, Padmaja V, Siva Kiran RR (2008) Statistical optimization of process variables for the large-scale production of Metarhizium anisopliae conidiospores in solid-state fermentation. Bioresour Technol 99:1530–1537

    Article  CAS  Google Scholar 

  9. Graham H, Balnave D (1995) Dietary enzymes for increasing energy availability. In: Wallace RJ, Chesson A (eds) Biotechnology in Animal Feeds, Animal Feeding. Weinheim VCH, Germany, pp 295–309

    Chapter  Google Scholar 

  10. Emerson R (1941) An experimental study of the life cycles and taxonomy of Allomyces. Lloydia 4:77–144

    Google Scholar 

  11. Peixoto-Nogueira SC, Sandrim VC, Guimarães LHC, Jorge JA, Terenzi FH, Polizeli MLTM (2008) Evidence of thermostable amylolytic activity from Rhizopus microsporus var rhizopodiformis using wheat bran and corncob as alternative carbon source. Bioprocess Biosyst Eng 31:329–334

    Article  CAS  Google Scholar 

  12. Khanna P, Sundari SS, Kumar NJ (1995) Production, isolation and partial purification of xylanase from Aspergillus sp. World J Microbiol Biotechnol 11:242–243

    Article  CAS  Google Scholar 

  13. Vogel HF (1964) Distribution of lysine pathways among fungi: evolutionary implications. Am Nat 98:435–446

    Article  CAS  Google Scholar 

  14. Rizzatti ACS, Jorge JA, Terenzi HF, Rechia CGV, Polizeli MLTM (2001) Purification and properties of a thermostable extracellular β-d-xylosidase produced by a thermotolerant Aspergillus phoenicis. J Ind Microbiol Biotechnol 26(3):156–160

    Article  CAS  Google Scholar 

  15. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  16. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  17. Shah AR, Madamwar D (2005) Xylanase production under solid-state fermentation and its characterization by an isolated strain of Aspergillus foetidus in India. World J Microbiol Biotechnol 21:233–243

    Article  CAS  Google Scholar 

  18. Camassola M, Dillon AJP (2007) Production of cellulases and hemicellulases by Penicillium echinulatum grown on pretreated sugar cane bagasse and wheat bran in solid-state fermentation. J Appl Microbiol 103(6):2196–2204

    Article  CAS  Google Scholar 

  19. Panagiotou G, Kekos D, Macris BJ, Christakopoulos P (2003) Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Ind Crop Prod 18:37–45

    Article  CAS  Google Scholar 

  20. Badhan AK, Chadha BS, Kaur J, Saini HS, Bhat MK (2007) Production of multiple xylanolytic and cellulolytic enzymes by thermophilic fungus Myceliophthora sp. IMI 387099. Bioresour Technol 98:504–510

    Article  CAS  Google Scholar 

  21. Soccol CR, Marin B, Raimbault M, Lebault JM (1994) Breeding and growth of Rhizopus in cassava by solid state fermentation. Appl Microbiol Biotechnol 41:330–336

    Article  CAS  Google Scholar 

  22. Sparringa RA, Kendall M, Westby A, Owens JD (2002) Effects of temperature, pH water activity and CO2 concentration on growth of Rhizopus oligosporus NRRL 2710. J Appl Microbiol 92:329–337

    Article  CAS  Google Scholar 

  23. Damaso MCT, Andrade CMMC, Pereira Júnior N (2000) Use of corncob for endoxylanase production by themophilic fungus Thermomyces lanuginosus IOC-4145. Appl Biochem Biotechnol 84–86:821–833

    Article  Google Scholar 

  24. Alma-Fernandez ER, Gomes E, Da Silva R (2002) Purification and characterization of two β-glucosidases from the thermophilic fungus Thermoascus aurantiascus. Folia Microbiol 47:685–690

    Article  Google Scholar 

  25. Lemos JLS, Fontes MCA, Pereira NJ (2001) Xylanase production by Aspergillus awamori in solid state fermentation and influence of different nitrogen sources. Appl Biochem Biotechnol 91–93:681–689

    Article  Google Scholar 

  26. Bakri Y, Jacques P, Thobart P (2003) Xylanase production by Penicillium canescens 10–10c in solid-state fermentation. Appl Biochem Biotechnol 105–108:737–747

    Article  Google Scholar 

  27. Yang SQ, Yan QJ, Jiang ZQ, Li LT, Tian HM, Wang YZ (2006) High-level of xylanase production by the thermophilic Paecilomyces thermophila J18 on wheat straw in solid-state fermentation. Bioresour Technol 97:1794–1800

    Article  CAS  Google Scholar 

  28. Gao J, Weng H, Zhu D, Yuan M, Guan M, Xi Y (2008) Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresour Technol 99:7623–7629

    Article  CAS  Google Scholar 

  29. Javed MR, Rashid MH, Nadeem H, Riaz M, Perveen R (2009) Catalytic and thermodynamic characterization of endoglucanase (CMCase) from Aspergillus oryzae cmc-1. Appl Biochem Biotechnol 157(3):483–497

    Article  CAS  Google Scholar 

  30. Kolenova K, Vrsanska M, Biely P (2005) Xylanase induction by l-sorbose in a fungus, Trichoderma reesei PC-3–7. Enzyme Microb Technol 36(7):903–910

    Article  CAS  Google Scholar 

  31. Sandrim VC, Rizzatti ACS, Terenzi HF, Jorge JA, Milagres AMF, Polizeli MLTM (2005) Purification and biochemical characterization of two xylanases produced by Aspergillus caespitosus and their potential for Kraft pulp bleaching. Process Biochem 40:1823–1828

    Article  CAS  Google Scholar 

  32. Nair SG, Sindhu R, Shashidhar S (2008) Purification and biochemical characterization of two xylanases from Aspergillus sydowii SBS 45. Appl Biochem Biotechnol 149:229–243

    Article  CAS  Google Scholar 

  33. Raj KC, Chandra TS (1996) Production of cellulase-poor xylanase by a newly isolated fungus Aspergillus fischeri Fxn1. Microbiol Lett 145:457–461

    Article  CAS  Google Scholar 

  34. Fengxia L, Mei L, Zhaoxin L, Xiaomei B, Haizhen Z, Yi W (2008) Purification and characterization of xylanase from Aspergillus ficuum AF-98. Bioresour Technol 99:5938–5941

    Article  Google Scholar 

  35. Morgavi DP, Newbold CJ, Beever DE, Wallace RJ (2000) Stability and stabilization of potential feed additive enzymes in rumen fluid. Enz Microbiol Technol 26:171–177

    Article  CAS  Google Scholar 

  36. Broderick GA, Wallace RJ, Ørskov ER (1991) Control of rate and extent of protein degradation. In: Tsuda T, Sasaki Y, Kawashima R (eds) Physiological aspects of digestion, metabolism in ruminants. Academic Press, San Diego, pp 541–582

    Google Scholar 

  37. Hristov AN, McAllister TA, Cheng K-J (1998) Stability of exogenous polysaccharide-degrading enzymes in the rumen. Ani Feed Sci Technol 76:161–168

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). J.A.J., R.A.R. and M.L.T.M.P. are Research Fellows of CNPq. F.D.A.F. was a recipient of a FAPESP fellowship and this study is part of her Master’s degree dissertation. The authors thank Ricardo F. Alarcon, Mauricio de Oliveira, and Mariana Cereia for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria de Lourdes Teixeira de Moraes Polizeli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Facchini, F.D.A., Vici, A.C., Reis, V.R.A. et al. Production of fibrolytic enzymes by Aspergillus japonicus C03 using agro-industrial residues with potential application as additives in animal feed. Bioprocess Biosyst Eng 34, 347–355 (2011). https://doi.org/10.1007/s00449-010-0477-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-010-0477-8

Keywords

Navigation