Skip to main content
Log in

Unraveling the metabolism of HEK-293 cells using lactate isotopomer analysis

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

HEK-293 is the most extensively used human cell line for the production of viral vectors and is gaining increasing attention for the production of recombinant proteins by transient transfection. To further improve the metabolic characterization of this cell line, we have performed cultures using 13C-labeled substrates and measured the resulting mass isotopomer distributions in lactate by LC/MS. Simultaneous metabolite and isotopomer balancing allowed improvement and validation of the metabolic model and quantification of key intracellular pathways. We have determined the amounts of glucose carbon channeled through the PPP, incorporated into the TCA cycle for energy production and lipids biosynthesis, as well as the cytosolic and mitochondrial malic enzyme fluxes. Our analysis also revealed that glutamine did not significantly contribute to lactate formation. An improved and quantitative understanding of the central carbon metabolism is greatly needed to pursue the rational development of engineering approaches at both the cellular and process levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4

Similar content being viewed by others

Abbreviations

ACCOA:

Acetyl-CoA

ACCOAm:

Acetyl-CoA in the mitochondria

AKG:

Alpha-ketoglutarate

ASN:

Asparagine

ASP:

Aspartate

ATP:

Adenosine triphosphate

BHK:

Baby hamster kidney

CHO:

Chinese hamster ovary

CIT:

Citrate

CITm:

Citrate in the mitochondria

CoA:

Coenzyme A

CYS:

Cysteine

E4P:

Erythrose-4-phosphate

F6P:

Fructose 6-phosphate

G3P:

Glyceraldehyde 3-phosphate

G6P:

Glucose 6-phosphate

GLY:

Glycine

HEK-293:

Human embryonic kidney

i-13C:

Singly 13C-labeled substrate in the “i” position

ILE:

Isoleucine

LAC:

Lactate

LC/MS:

Liquid chromatography mass spectrometry

LC-SFM:

Low-calcium serum-free medium

LEU:

Leucine

LYS:

Lysine

MAL:

Malate

MET:

Methionine

NADPH:

Reduced nicotinamide adenine dinucleotide phosphate oxidase

NMR:

Nuclear magnetic resonance

OAA:

Oxaloacetate

OAAm:

Oxaloacetate in the mitochondria

PHE:

Phenylalanine

PPP:

Pentose phosphate pathway

PYR:

Pyruvate

PYRm:

Pyruvate in the mitochondria

R5P:

Ribulose-5-phosphate

S7P:

Sedoheptulose-7-phosphate

SER:

Serine

TCA:

Tricarboxylic acid cycle

THR:

Threonine

TYR:

Tyrosine

U-13C:

Uniformly 13C labeled substrate

VAL:

Valine

References

  1. Graham FL, Smiley J, Russel WC, Nairn MR (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36:59–72

    Article  CAS  Google Scholar 

  2. Kamen A, Henry O (2004) Development and optimization of an adenovirus production process. J Gene Med 6(Suppl 1):S184–S192

    Google Scholar 

  3. Schoofs G, Monica TJ, Ayala J, Horwitz J, Montgomery T, Roth G, Castillo FJ (1998) A high-yielding serum-free, suspension cell culture process to manufacture recombinant adenoviral vectors for gene therapy. Cytotechnol 28:81–89

    Article  CAS  Google Scholar 

  4. Broussau S, Jabbour N, Lachapelle G, Durocher Y, Tom R, Transfiguracion J, Gilbert R, Massie B (2008) Inducible packaging cells for large-scale production of lentiviral vectors in serum-free suspension culture. Mol Ther 16:500–507

    Article  CAS  Google Scholar 

  5. Ansorge S, Lanthier S, Transfiguracion J, Durocher Y, Henry O, Kamen A (2009) Development of a scalable process for high-yield lentiviral vector production by transient transfection of HEK293 suspension cultures. J Gene Med 11(10):868–876

    Google Scholar 

  6. Ghani K, Garnier A, Coelho H, Transfiguracion J, Trudel P, Kamen A (2006) Retroviral vector production using suspension-adapted 293GPG cells in a 3L acoustic filter-based perfusion bioreactor. Biotechnol Bioeng 95:653–660

    Article  CAS  Google Scholar 

  7. Park JY, Lim BP, Lee K, Kim YG, Jo EC (2006) Scalable production of adeno-associated virus type 2 vectors via suspension transfection. Biotechnol Bioeng 94:416–430

    Article  CAS  Google Scholar 

  8. Cote J, Garnier A, Massie B, Kamen A (1998) Serum-free production of recombinant proteins and adenoviral vectors by 293sf-3f6 cells. Biotechnol Bioeng 59:567–575

    Article  CAS  Google Scholar 

  9. Durocher Y, Perret S, Kamen A (2002) High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res 30:E9

    Article  Google Scholar 

  10. Meissner P, Pick H, Kulangara A, Chatellard P, Friedrich K, Wurm FM (2001) Transient gene expression: recombinant protein production with suspension-adapted HEK293-EBNA cells. Biotechnol Bioeng 75:197–203

    Article  CAS  Google Scholar 

  11. Heath C, Kiss R (2007) Cell culture process development: advances in process engineering. Biotechnol Prog 23:46–51

    Article  CAS  Google Scholar 

  12. Dorka P, Fischer C, Budman H, Scharer JM (2009) Metabolic flux-based modeling of mAb production during batch and fed-batch operations. Bioprocess Biosyst Eng 32:183–196

    Article  CAS  Google Scholar 

  13. Provost A, Bastin G, Agathos SN, Schneider YJ (2006) Metabolic design of macroscopic bioreaction models: application to Chinese hamster ovary cells. Bioprocess Biosyst Eng 29:349–366

    Article  CAS  Google Scholar 

  14. Omasa T, Furuichi K, Iemura T, Katakura Y, Kishimoto M, Suga K (2009) Enhanced antibody production following intermediate addition based on flux analysis in mammalian cell continuous culture. Bioprocess Biosyst Eng 33:117–125

    Article  Google Scholar 

  15. De Alwis DM, Dutton RL, Scharer J, Moo-Young M (2007) Statistical methods in media optimization for batch and fed-batch animal cell culture. Bioprocess Biosyst Eng 30:107–113

    Article  CAS  Google Scholar 

  16. Nadeau I, Kamen A (2003) Production of adenovirus vector for gene therapy. Biotechnol Adv 20:475–489

    Article  CAS  Google Scholar 

  17. Nadeau I, Sabatie J, Koehl M, Perrier M, Kamen A (2000) Human 293 cell metabolism in low glutamine-supplied culture: interpretation of metabolic changes through metabolic flux analysis. Metab Eng 2:277–292

    Article  CAS  Google Scholar 

  18. Nadeau I, Jacob D, Perrier M, Kamen A (2000) 293SF metabolic flux analysis during cell growth and infection with an adenoviral vector. Biotechnol Prog 16:872–884

    Article  CAS  Google Scholar 

  19. Lee YY, Yap MGS, Hu WS, Wong KTK (2003) Low-glutamine fed-batch cultures of 293-HEK serum-free suspension cells for adenovirus production. Biotechnol Prog 19:501–509

    Article  CAS  Google Scholar 

  20. Nadeau I, Gilbert PA, Jacob D, Perrier M, Kamen A (2002) Low-protein medium affects the 293SF central metabolism during growth and infection with adenovirus. Biotechnol Bioeng 77:91–104

    Article  CAS  Google Scholar 

  21. Henry O, Dormond E, Perrier M, Kamen A (2004) Insights into adenoviral vector production kinetics in acoustic filter-based perfusion cultures. Biotechnol Bioeng 86:765–774

    Article  CAS  Google Scholar 

  22. Bonarius HPJ, Schmid G, Tramper J (1997) Flux analysis of underdetermined metabolic networks: the quest for the missing constraints. Trends Biotechnol 15:308–314

    Article  CAS  Google Scholar 

  23. Sauer U, Hatzimanikatis V, Hohmann HP, Manneberg M, van Loon AP, Bailey JE (1996) Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis. Appl Environ Microbiol 62:3687–3696

    CAS  Google Scholar 

  24. Follstad BD, Balcarcel RR, Stephanopoulos G, Wang DIC (1999) Metabolic flux analysis of hybridoma continuous culture steady state multiplicity. Biotechnol Bioeng 63:675–683

    Article  CAS  Google Scholar 

  25. Nyberg GB, Balcarcel RR, Follstad BD, Stephanopoulos G, Wang DIC (1999) Metabolism of peptide amino acids by Chinese hamster ovary cells grown in a complex medium. Biotechnol Bioeng 62:324–335

    Article  CAS  Google Scholar 

  26. Xie L, Wang D (1996) Material balance studies on animal cell metabolism using a stoichiometrically based reaction network. Biotechnol Bioeng 52:579–590

    Article  CAS  Google Scholar 

  27. Bonarius HPJ, Ozemre A, Timmerarends B, Skrabal P, Tramper J, Schmid G, Heinzle E (2001) Metabolic-flux analysis of continuously cultured hybridoma cells using13-CO2 mass spectrometry in combination with 13C-lactate nuclear magnetic resonance spectroscopy and metabolite balancing. Biotechnol Bioeng 74:528–538

    Article  CAS  Google Scholar 

  28. Mancuso A, Sharfstein ST, Tucker S, Clark DS, Blanch HW (1994) Examination of primary metabolic pathways in a murine hybridoma with carbon-13 nuclear magnetic resonance spectroscopy. Biotechnol Bioeng 44:563–585

    Article  CAS  Google Scholar 

  29. Sharfstein ST, Tucker S, Mancuso A, Blanch HW, Clark DS (1994) Quantitative in vivo nuclear magnetic resonance studies of hybridoma metabolism. Biotechnol Bioeng 43:1059–1074

    Article  CAS  Google Scholar 

  30. Goudar C, Biener R, Boisart C, Heidemann R, Piret J, de Graaf A, Konstantinov K (2010) Metabolic flux analysis of CHO cells in perfusion culture by metabolite balancing and 2D [13C, 1H] COSY NMR spectroscopy. Metab Eng 12:138–149

    Article  CAS  Google Scholar 

  31. Metallo CM, Walther JL, Stephanopoulos G (2009) Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. J Biotechnol 144:167–174

    Article  CAS  Google Scholar 

  32. Maier K, Hofmann U, Reuss M, Mauch K (2008) Identification of metabolic fluxes in hepatic cells from transient 13C-labeling experiments: part ii. Flux estimation. Biotechnol Bioeng 100:355–370

    Article  CAS  Google Scholar 

  33. Young JD, Walther JL, Antoniewicz MR, Yoo H, Stephanopoulos G (2008) An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis. Biotechnol Bioeng 99:686–699

    Article  CAS  Google Scholar 

  34. Bonarius HP, Timmerarends B, de Gooijer CD, Tramper J (1998) Metabolite-balancing techniques vs. 13C tracer experiments to determine metabolic fluxes in hybridoma cells. Biotechnol Bioeng 58:258–262

    Article  CAS  Google Scholar 

  35. Henry O, Perrier M, Kamen A (2005) Metabolic flux analysis of HEK-293 cells in perfusion cultures for the production of adenoviral vectors. Metab Eng 7:467–476

    Article  CAS  Google Scholar 

  36. Lioussanne L, Jolicoeur M, St-Arnaud M (2008) Mycorrhizal colonization with Glomus intraradices and development stage of transformed tomato roots significantly modify the chemotactic response of zoospores of the pathogen Phytophthora nicotianae. Soil Biol Biochem 40:2217–2224

    Article  CAS  Google Scholar 

  37. Bonarius HPJ, Hatzimanikatis V, Meesters KPH, de Gooijer CD, Schmid G, Tramper J (1996) Metabolic flux analysis of hybridoma cells in different culture media using mass balances. Biotechnol Bioeng 50:299–318

    Article  CAS  Google Scholar 

  38. Schmidt K, Carlsen M, Nielsen J, Villadsen J (1997) Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices. Biotechnol Bioeng 55:831–840

    Article  CAS  Google Scholar 

  39. Wiechert W (2001) 13C metabolic flux analysis. Metab Eng 3:195–206

    Article  CAS  Google Scholar 

  40. Quek LE, Wittmann C, Nielsen LK, Kromer JO (2009) Openflux: efficient modelling software for 13C-based metabolic flux analysis. Microb Cell Fact 8:25

    Article  Google Scholar 

  41. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng 9:68–86

    Article  CAS  Google Scholar 

  42. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2006) Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab Eng 8:324–337

    Article  CAS  Google Scholar 

  43. Zupke C, Stephanopoulos G (1995) Intracellular flux analysis in hybridomas using mass balances and in vitro 13C nmr. Biotechnol Bioeng 45:292–303

    Article  CAS  Google Scholar 

  44. Quek LE, Dietmair S, Kromer JO, Nielsen LK (2009) Metabolic flux analysis in mammalian cell culture. Metab Eng 12:161–172

    Article  Google Scholar 

  45. Munger J, Bennett BD, Parikh A, Feng XJ, McArdle J, Rabitz HA, Shenk T, Rabinowitz JD (2008) Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat Biotechnol 26:1179–1186

    Article  CAS  Google Scholar 

  46. Hofmann U, Maier K, Niebel A, Vacun G, Reuss M, Mauch K (2008) Identification of metabolic fluxes in hepatic cells from transient 13C-labeling experiments: part i. Experimental observations. Biotechnol Bioeng 100:344–354

    Article  CAS  Google Scholar 

  47. Deshpande R, Yang TH, Heinzle E (2009) Towards a metabolic and isotopic steady state in CHO batch cultures for reliable isotope-based metabolic profiling. Biotechnol J 4:247–263

    Article  CAS  Google Scholar 

  48. Nadeau I, Garnier A, Cote J, Massie B, Chavarie C, Kamen A (1996) Improvement of recombinant protein production with the human adenovirus/293S expression system using fed-batch strategies. Biotechnol Bioeng 51:613–623

    Article  CAS  Google Scholar 

  49. Siegwart P, Cote J, Male K, Luong JHT, Perrier M, Kamen A (1999) Adaptive control at low glucose concentration of HEK-293 cell serum-free cultures. Biotechnol Prog 15:608–616

    Article  CAS  Google Scholar 

  50. Goudar CT, Biener R, Konstantinov KB, Piret JM (2009) Error propagation from prime variables into specific rates and metabolic fluxes for mammalian cells in perfusion culture. Biotechnol Prog 25:986–998

    Article  CAS  Google Scholar 

  51. Paredes C, Sanfeliu A, Cardenas F, Cairo JJ, Godia F (1998) Estimation of the intracellular fluxes for a hybridoma cell line by material balances. Enzyme Microb Technol 23:187–198

    Article  CAS  Google Scholar 

  52. Fitzpatrick L, Jenkins HA, Butler M (1993) Glucose and glutamine metabolism of a murine B-lymphocyte hybridoma grown in batch culture. Appl Biochem Biotechnol 43:93–116

    Article  CAS  Google Scholar 

  53. Petch D, Butler M (1994) Profile of energy metabolism in a murine hybridoma: glucose and glutamine utilization. J Cell Physiol 161:71–76

    Article  CAS  Google Scholar 

  54. Neermann J, Wagner R (1996) Comparative analysis of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells. J Cell Physiol 166:152–169

    Article  CAS  Google Scholar 

  55. Reitzer LJ, Wice BM, Kennell D (1980) The pentose cycle. Control and essential function in HeLa cell nucleic acid synthesis. J Biol Chem 255:5616–5626

    CAS  Google Scholar 

  56. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104:19345–19350

    Article  CAS  Google Scholar 

  57. Lu D, Mulder H, Zhao P, Burgess SC, Jensen MV, Kamzolova S, Newgard CB, Sherry AD (2002) 13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS). Proc Natl Acad Sci USA 99:2708–2713

    Article  CAS  Google Scholar 

  58. Peuhkurinen KJ, Hiltunen JK, Hassinen IE (1983) Metabolic compartmentation of pyruvate in the isolated perfused rat heart. Biochem J 210:193–198

    CAS  Google Scholar 

  59. Zwingmann C, Richter-Landsberg C, Leibfritz D (2001) 13C isotopomer analysis of glucose and alanine metabolism reveals cytosolic pyruvate compartmentation as part of energy metabolism in astrocytes. Glia 34:200–212

    Article  CAS  Google Scholar 

  60. Zielke HR, Sumbilla C, Sevdalian D, Hawkins R, Ozand P (1980) Lactate: a major product of glutamine metabolism by human diploid fibroblasts. J Cell Physiol 104:433–441

    Article  CAS  Google Scholar 

  61. Pham PL, Perret S, Cass B, Carpentier E, St-Laurent G, Bisson L, Kamen A, Durocher Y (2005) Transient gene expression in HEK293 cells: Peptone addition posttransfection improves recombinant protein synthesis. Biotechnol Bioeng 90:332–344

    Article  CAS  Google Scholar 

  62. Henry O, Kamen A, Perrier M (2007) Monitoring the physiological state of mammalian cell perfusion processes by on-line estimation of intracellular fluxes. J Process Cont 17:241–251

    Article  CAS  Google Scholar 

  63. Maranga L, Aunins JG, Zhou W (2005) Characterization of changes in per.C6 cellular metabolism during growth and propagation of a replication-deficient adenovirus vector. Biotechnol Bioeng 90:645–655

    Article  CAS  Google Scholar 

  64. Henry O, Kwok E, Piret JP (2008) Simpler noninstrumented batch and semicontinuous cultures provide mammalian cell kinetic data comparable to continuous and perfusion cultures. Biotechnol Prog 24:921–931

    Article  CAS  Google Scholar 

  65. Goudar C, Biener R, Zhang C, Michaels J, Piret J, Konstantinov K (2006) Towards industrial application of quasi real-time metabolic flux analysis for mammalian cell culture. Adv Biochem Eng Biotechnol 101:99–118

    CAS  Google Scholar 

  66. Elias CB, Carpentier E, Durocher Y, Bisson L, Wagner R, Kamen A (2003) Improving glucose and glutamine metabolism of human HEK 293 and Trichoplusia ni insect cells engineered to express a cytosolic pyruvate carboxylase enzyme. Biotechnol Prog 19:90–97

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the following contributors: Hugues-Anderson Kamga-Wambo and Steve Hisiger from École Polytechnique de Montreal for 13C LC/MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Henry.

Appendix

Appendix

Metabolic network for HEK293 cells and the corresponding carbon atom transitions (Table 3).

Table 3 Metabolic model and atomic transitions for HEK-293 cells

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henry, O., Jolicoeur, M. & Kamen, A. Unraveling the metabolism of HEK-293 cells using lactate isotopomer analysis. Bioprocess Biosyst Eng 34, 263–273 (2011). https://doi.org/10.1007/s00449-010-0468-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-010-0468-9

Keywords

Navigation