Skip to main content
Log in

Statistical methods in media optimization for batch and fed-batch animal cell culture

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Hybridoma 130-8F producing anti-F monoclonal antibodies (MAb) were grown in batch and fed-batch mode with glutamine as the limiting substrate. The initial concentration of glucose varied between 10 and 25 mM but was not growth limiting. Monoclonal antibody production was identified as being partially growth associated. Employing the cumulative cell hour concept, external metabolic flux estimates were calculated during the exponential growth phase for MAb, glucose, amino acids, ammonia and lactate. Through nutritional profiling using principal component analysis (PCA) followed by partial least squares regression (PLS), key metabolites were identified and grouped for significant positive, significant negative, low level, and negligible correlation to MAb production, cellular growth, glucose consumption, and ammonia and lactate production. Significant relationships peculiar to Hybridoma 130-8F were identified, such as demand for two normally non-essential amino acids (asparagine and aspartic acid), and the positive correlation between MAb and ammonia production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ch:

Cell hours

CHvol :

Volumetric cell hours

ELISA:

Enzyme linked immunosorbent assay

MAb:

Monoclonal antibodies

PCA:

Principal combonent analysis

PLS:

Partial least squares regression

X t :

Total cell concentration

X V :

Viable cell concentration

Δt :

Change in time

References

  1. Alter O, Brown PO, Botstein D (2000) Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci 97(18):10101–10106

    Article  CAS  Google Scholar 

  2. Anderson LJ, Hierholzer JC, Tsou C, Hendry RM, Fernie BF, Stone Y, McIntosh K (1985) Antigenic characterization of respiratory syncytial virus strains with monoclonal antibodies. J Infect Dis 151(4):626–633

    CAS  Google Scholar 

  3. Bakker WAM, Schäfer HH, Beeftink JT, De Gooijer CD (1996) Hybridomas in a bioreactor cascade: modeling and determination of growth and death kinetics. Cytotechnology 21:263–277

    Article  CAS  Google Scholar 

  4. Barford JP, Phillips PJ, Marquis CP, Harbour C (1996) Biosynthesis of protein products by animal cells. A re-growth and non-growth associated concepts valid or useful? Cytotechnology 21:133–148

    Article  CAS  Google Scholar 

  5. Batt BC, Kompala DS (1989) A structured kinetic modeling framework for the dynamics of hybridoma growth and monoclonal antibody production in continuous suspension cultures. Biotechnol Bioeng 34:515–531

    Article  CAS  Google Scholar 

  6. Bibila TA, Flickinger MC (1991) A structured model for monoclonal antibody synthesis in exponentially growing and stationary phase hybridoma cells. Biotechnol Bioeng 37:210–226

    Article  CAS  Google Scholar 

  7. Chen T, Hsu YJ, Liu X, Zhang W (2002) Principle component analysis and its variants for biometrics, IEEE ICIP

  8. Dalili M, Ollis DF (1988) The influence of cyclic nucleotides on hybridoma growth and monoclonal antibody production. Biotechnol Lett 10:781–786

    Article  CAS  Google Scholar 

  9. Dalili M, Sayles GD, Ollis DF (1990) Glutamine-limited batch hybridoma growth and antibody production: experiment and model. Biotechnol Bioeng 36:74–82

    Article  CAS  Google Scholar 

  10. Dhir S, Morrow KJ, Rhinehart RR, Wiesner T (2000) Dynamic optimisation of hybridoma growth in a fed-batch bioreactor. Biotechnol` Bioeng 67:197–205

    Article  CAS  Google Scholar 

  11. Dutton RL (1998) Growth and productivity of a recombinant Chinese Hamster ovary cell line in batch culture. University of Waterloo

  12. Dutton RL, Scharer JM, Moo-Young M (1998) Descriptive parameter evaluation in mammalian cell culture. Cytotechnology 26:139–152

    Article  Google Scholar 

  13. Franco-Lara E, Weuster-Botz D (2005) Estimation of optimal feeding strategies for fed-batch bioprocesses. Bioprocess Biosyst Eng 27:255–262

    Article  CAS  Google Scholar 

  14. Jang JD, Barford JP (2000) An unstructured kinetic model of macromolecular metabolism in batch and fed-batch cultures of hybridoma cells producing monoclonal antibody. Biochem Eng J 4:153–168

    Article  CAS  Google Scholar 

  15. Jeong YH, Wang SS (1995) Role of glutamine in hybridoma cell culture: effects on cell growth, antibody production, and cell metabolism. Enzyme Microb Technol 17:47–55

    Article  CAS  Google Scholar 

  16. Johansson D, Lindgren P, Berglund A (2003) A multivariate approach applied to microarray data for identification of genes with cell cycle-coupled transcription. Bioinformatics 19(4):467–473

    Article  CAS  Google Scholar 

  17. Ljunggren J, Häggström L (1995) Specific growth rate as a parameter for tracing growth-limiting substances in animal cell cultures. J Biotechnol 42:163–175

    Article  CAS  Google Scholar 

  18. Mandenius C-F (2004) Recent developments in the monitoring, modeling and control of biological production systems. Bioprocess Biosyst Eng 26:347–351

    Article  CAS  Google Scholar 

  19. Miller WM, Blanch HW, Wilke CR (1988) A kinetic analysis of hybridoma growth and metabolism in batch and continuous suspension culture. Effect of nutrient concentration, dilution rate, and pH. Biotechnol Bioeng 32:947–965

    Article  CAS  Google Scholar 

  20. Nielsen J, Emborg C, Halberg K, Villadsen J (1989) Compartment model concept used in the design of fermenation with recombinant microorganisms. Biotechnol Bioeng 34:478–486

    Article  CAS  Google Scholar 

  21. Phatak A, de Hoog F (2002) J Chemometr 16:361–367

    Article  CAS  Google Scholar 

  22. Pörtner R, Schäfer T (1996) Modelling hybridoma cell growth and metabolism—a comparison of selected models and data. J Biotechnol 49:119–135

    Article  Google Scholar 

  23. Sanderson CS, Jang JD, Barford JP, Barton GW (1999) A structured, dynamic model for animal cell culture systems: application to murine hybridoma. Biochem Eng J 3:213–218

    Article  CAS  Google Scholar 

  24. Stephanopoulos G, Nielsen J, Aristidou A (1998) Metabolic engineering: principles and methodologies. Academic, Sand Diego

    Google Scholar 

  25. Suzuki E, Ollis DF (1989) Cell cycle model for antibody production kinetics. Biotechnol Bioeng 34:1398–1402

    Article  CAS  Google Scholar 

  26. Tatiraju S, Sorous M, Mutharasan R (1999) Multi-rate nonlinear state and parameter estimation in a bioreactor. Biotechnol Bioeng 63:22–32

    Article  CAS  Google Scholar 

  27. Xie L, Wang DIC (1994) Fed-batch cultivation of animal cells using different medium design concepts and feeding strategies. Biotechnol Bioeng 43:1175–1189

    Article  CAS  Google Scholar 

  28. Zhang L, Shen H, Zhang Y (2004) Fed-batch culture of hybridoma cells in serum-free medium using an optimized feeding strategy. J Chem Technol Biotechnol 79:171–181

    Article  CAS  Google Scholar 

  29. Zhou W, Chen CC, Buckland B, Aunins J (1997) Fed-batch culture of recombinant NSO myeloma cells with high monoclonal antibody production. Biotechnol Bioeng 55:783–792

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeno Scharer.

Additional information

Industrial Sponsor: Sanofi Pasteur (formerly Aventis Pasteur), Toronto, Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Alwis, D.M., Dutton, R.L., Scharer, J. et al. Statistical methods in media optimization for batch and fed-batch animal cell culture. Bioprocess Biosyst Eng 30, 107–113 (2007). https://doi.org/10.1007/s00449-006-0107-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-006-0107-7

Keywords

Navigation