Skip to main content
Log in

Hydrogen peroxide sensor based on Prussian blue electrodeposited on (3-mercaptopropyl)-trimethoxysilane polymer-modified gold electrode

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A hydrogen peroxide (H2O2) sensor was developed by electrodepositing Prussian blue (PB) on a gold electrode modified with (3-mercaptopropyl)-trimethoxysilane (MPS) polymer. The characterization of the self-assembled electrode was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The results of electrochemical experiments showed that such constructed sensor had a favorable catalytic ability to reduce H2O2. The MPS film on the modified gold electrode greatly enhanced the pH-adaptive range of PB. Large surface-to-volume ratio property of double-layer 2d-network MPS-modified PB electrode enabled stable and highly sensitive performance of the non-enzymatic H2O2 sensor. The linear range of H2O2 determined is from 2.0 × 10−6 to 2.0 × 10−4 mol L−1 with a correlation coefficient of 0.9991 and a detection limit for H2O2 of 1.8 × 10−6 mol L−1. The influences of the potentially interfering substances on the determination of H2O2 were investigated. This modified electrode exhibits a good selectivity and high sensitivity with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bartlett PN, Birkin PR, Wang JH, Palmisano F, Benedetto GD (1998) An enzyme switch employing direct electrochemical communication between horseradish peroxidase and a poly(aniline) film. Anal Chem 70:3685–3694

    Article  CAS  Google Scholar 

  2. Sellers RM (1980) Spectrophotometric determination of hydrogen peroxide using potassium titanium(IV) oxalate. Analyst 105:950–954

    Article  CAS  Google Scholar 

  3. Wolfbeis O, Drkop A, Wu M, Lin Z (2002) A europium-ion-based luminescent sensing probe for hydrogen peroxide. Angew Chem Int Ed 41:4495–4498

    Article  CAS  Google Scholar 

  4. Salimi A, Miranzadeh L, Hallaj R, Mamkhezri H (2008) Picomolar detection of hydrogen peroxide at glassy carbon electrode modified with NAD+ and single walled carbon nanotubes. Electroanal 20:1760–1768

    Article  CAS  Google Scholar 

  5. Darder M, Takada K, Pariente F, Lorenzo E, Abruna HD (1999) Dithiobissuccinimidyl propionate as an anchor for assembling peroxidases at electrodes surfaces and its application in a H2O2 biosensor. Anal Chem 71:5530–5537

    Article  CAS  Google Scholar 

  6. Masullo M, Raimo G, Russo AD, Bocchini V, Bannister JV (1996) Purification and characterization of NADH oxidase from the Archaea Sulfolobus acidocaldarius and Sulfolobus solfataricus. Biotechnol Appl Biochem 23:47–54

    CAS  Google Scholar 

  7. Bhate RH, Ramasarma T (2010) Catalase-dependent release of half of the consumed oxygen during the activity of potato mitochondrial alternative oxidase confirms H2O2 as the product of oxygen reduction. Arch Biochem Biophys 495:95–96

    Article  CAS  Google Scholar 

  8. Hurdis EC, Romeyn H (1954) Accuracy of determination of hydrogen peroxide by cerate oxidimetry. Anal Chem 26:320–325

    Article  CAS  Google Scholar 

  9. Luo W, Abbas ME, Zhu LH, Deng KJ, Tang HQ (2008) Rapid quantitative determination of hydrogen peroxide by oxidation decolorization of methyl orange using a Fenton reaction system. Anal Chim Acta 629:1–5

    Article  CAS  Google Scholar 

  10. Chen WW, Li BX, Xu CL, Wang L (2009) Chemiluminescence flow biosensor for hydrogen peroxide using DNAzyme immobilized on eggshell membrane as a thermally stable biocatalyst. Biosens Bioelectron 24:2534–2540

    Article  CAS  Google Scholar 

  11. Sheng QL, Yu H, Zheng JB (2007) Hydrogen peroxide determination by carbon ceramic electrodes modified with pyrocatechol violet. Electrochim Acta 52:7300–7306

    Article  CAS  Google Scholar 

  12. Luo XL, Xu JJ, Zhang Q, Yang GJ, Chen HY (2005) Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly. Biosens Bioelectron 21:190–196

    Article  CAS  Google Scholar 

  13. Jia JB, Wang BQ, Wu AG, Cheng GJ, Li Z, Dong SJ (2002) A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol–gel network. Anal Chem 74:2217–2223

    Article  CAS  Google Scholar 

  14. Guo SJ, Wang EK (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598:181–192

    Article  CAS  Google Scholar 

  15. Gavalas VG, Chaniotakis NA (2001) Phosphate biosensor based on polyelectrolyte-stabilized pyruvate oxidase. Anal Chim Acta 427:271–277

    Article  CAS  Google Scholar 

  16. Gavalas VG, Chaniotakis NA (2000) Polyelectrolyte stabilized oxidase based biosensors: effect of diethylaminoethyl-dextran on the stabilization of glucose and lactate oxidases into porous conductive carbon. Anal Chim Acta 404:67–73

    Article  CAS  Google Scholar 

  17. Zou GZ, Ju HX (2004) Electrogenerated chemiluminescence from a CdSe nanocrystal film and its sensing application in aqueous solution. Anal Chem 76:6871–6876

    Article  CAS  Google Scholar 

  18. Kulesza PJ, Miecznikowski K, Chojak M, Malik MA, Zamponi S, Marassi R (2001) Electrochromic features of hybrid films composed of polyaniline and metal hexacyanoferrate. Electrochim Acta 46:4371–4378

    Article  CAS  Google Scholar 

  19. Pyrasch M, Tieke B (2001) Electro- and photoresponsive films of Prussian blue prepared upon multiple sequential adsorption. Langmuir 17:7706–7709

    Article  CAS  Google Scholar 

  20. Marco O, Pamela A, Rodrigo DR, Ricardo S, Ricardo C, Fritz S, Heike K (2005) Chronocoulometric study of the electrochemistry of Prussian blue. J Phys Chem B 109:15483–15488

    Article  Google Scholar 

  21. Zhou P, Xue D, Luo H, Chen X (2002) Fabrication, structure, and magnetic properties of highly ordered Prussian blue nanowire arrays. Nano Lett 2:845–847

    Article  CAS  Google Scholar 

  22. Karyakin AA, Karyakin EE (1999) Prussian blue-based ‘artificial peroxidase’ as a transducer for hydrogen peroxide detection. Application to biosensors. Sens Actuators B 57:268–273

    Article  Google Scholar 

  23. Karyakin AA, Karyakina EE, Gorton L (2000) Amperometric biosensor for glutamate using Prussian blue-based “artificial peroxidase” as a transducer for hydrogen peroxide. Anal Chem 72:1720–1723

    Article  CAS  Google Scholar 

  24. Li NB, Park JH, Park K, Kwon SJ, Shin H, Kwak J (2008) Characterization and electrocatalytic properties of Prussian blue electrochemically deposited on nano-Au/PAMAM dendrimer-modified gold electrode. Biosens Bioelectron 23:1519–1526

    Article  CAS  Google Scholar 

  25. Liu Y, Chu ZY, Jin WQ (2009) A sensitivity-controlled hydrogen peroxide sensor based on self-assembled Prussian blue modified electrode. Electrochem Commun 11:484–487

    Article  CAS  Google Scholar 

  26. Razmi H, Mohammad-Rezaei R, Heidari H (2009) Self-assembled Prussian blue nanoparticles based electrochemical sensor for high sensitive determination of H2O2 in acidic media. Electroanalysis 21:2355–2362

    Article  CAS  Google Scholar 

  27. Li YH, Liu XY, Zeng XD, Liu Y, Liu XS, Wei WZ, Luo SL (2009) Nonenzymatic hydrogen peroxide sensor based on a Prussian blue-modified carbon ionic liquid electrode. Microchim Acta 165:393–398

    Article  CAS  Google Scholar 

  28. Zou YJ, Sun LX, Xu F (2007) Biosensor based on polyaniline–Prussian blue/multi-walled carbon nanotubes hybrid composites. Biosens Bioelectron 22:2669–2674

    Article  CAS  Google Scholar 

  29. Li ZF, Chen JH, Li W, Chen K, Nie LH, Yao SZ (2007) Improved electrochemical properties of Prussian blue by multi-walled carbon nanotubes. J Electroanal Chem 603:59–66

    Article  CAS  Google Scholar 

  30. Tseng KS, Chen LC, Ho KC (2005) Amperometric detection of hydrogen peroxide at a Prussian blue-modified FTO electrode. Sens Actuators B 108:738–745

    Article  Google Scholar 

  31. Zhou YM, Wu ZY, Shen GL, Yu RQ (2003) An amperometric immunosensor based in Nafion-modified electrode for determination of Schistosoma japonicum antibody. Sens Actuators B 89:292–298

    Article  Google Scholar 

  32. Ritzert NL, Casella SS, Zapien DC (2009) Surface-electrochemistry of ferritin adsorbed on 8-mercaptooctanoic acid-modified gold electrodes. Electrochem Commun 11:827–830

    Article  CAS  Google Scholar 

  33. Wu Y, Li NB, Luo HQ (2008) Electrochemical determination of Pb(II) at a gold electrode modified with a self-assembled monolayer of 2, 5-dimercapto-1, 3, 4-thiadiazole. Microchim Acta 160:185–190

    Article  CAS  Google Scholar 

  34. Cai M, Ho M, Pemberton JE (2000) Surface vibrational spectroscopy of alkylsilane layers covalently bonded to monolayers of (3-mercaptopropyl)-trimethoxysilane on Ag substrates. Langmuir 16:3446–3453

    Article  CAS  Google Scholar 

  35. Yu L, Zhang G, Wu Y, Bai X, Guo D (2008) Cupric oxide nanoflowers synthesized with a simple solution route and their field emission. J Cryst Growth 310:3125–3130

    Article  CAS  Google Scholar 

  36. Karyakin AA, Karyakin EE, Gorton L (1999) On the mechanism of H2O2 reduction at Prussian blue modified electrodes. Electrochem Commun 1:78–82

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (No. 20575054), China (NSFC)-Korea (KOSEF) Joint Research Project (No. 20811140329) and the Municipal Science Foundation of Chongqing City (No. CSTC-2008BB4012, CSTC-2008BB4013), and all authors here express their deep thanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nian Bing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Luo, H.Q. & Li, N.B. Hydrogen peroxide sensor based on Prussian blue electrodeposited on (3-mercaptopropyl)-trimethoxysilane polymer-modified gold electrode. Bioprocess Biosyst Eng 34, 215–221 (2011). https://doi.org/10.1007/s00449-010-0463-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-010-0463-1

Keywords

Navigation