Skip to main content
Log in

Maintaining high anaerobic succinic acid productivity by product removal

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

During dual-phase fermentations using Escherichia coli engineered for succinic acid production, the productivity and viable cell concentration decrease as the concentration of succinic acid increases. The effects of succinic acid on the fermentation kinetics, yield, and cell viability were investigated by resuspending cells in fresh media after selected fermentation times. The cellular succinic acid productivity could be restored, but cell viability continuously decreased throughout the fermentations by up to 80% and subsequently the volumetric productivity was reduced. Omitting complex nutrients in the resuspension media had no significant effect on cellular succinate productivity and yield, although the viable cell concentration and thus the volumetric productivity was reduced by approximately 20%. By resuspending the cells, the amount of succinate produced during a 100-h fermentation was increased by more than 60%. The results demonstrate that by product removal succinic acid productivity can be maintained at high levels for extended periods of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Werpy T, Petersen G (2004) Top value added chemicals from biomass, volume I. US Department of Energy, http://www1.eere.energy.gov/biomass/pdfs/35523.pdf

  2. Zeikus JG, Jain MK, Elankovan P (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51:545–552

    Article  CAS  Google Scholar 

  3. Chatterjee R, Millard CS, Champion K, Clark DP, Donnelly MI (2001) Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Appl Environ Microbiol 67:148–154

    Article  CAS  Google Scholar 

  4. Lin H, Bennett GN, San KY (2005) Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions. Biotechnol Bioeng 90:775–779

    Article  CAS  Google Scholar 

  5. Samuelov NS, Datta R, Jain MK, Zeikus JG (1999) Whey fermentation by Anaerobiospirillum succiniciproducens for production of a succinate-based animal feed additive. Appl Environ Microbiol 65:2260–2263

    CAS  Google Scholar 

  6. Kim DY, Yim SC, Lee PC, Lee WG, Lee SY, Chang HN (2004) Batch and continuous fermentation of succinic acid from wood hydrolysate by Mannheimia succiniciproducens MBEL55E. Enzyme Microb Technol 35:648–653

    Article  CAS  Google Scholar 

  7. Agarwal L, Isar J, Meghwanshi GK, Saxena RK (2006) A cost effective fermentative production of succinic acid from cane molasses and corn steep liquor by Escherichia coli. J Appl Microbiol 100:1348–1354

    Article  CAS  Google Scholar 

  8. Lee PC, Lee SY, Hong SH, Chang HN (2002) Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen. Appl Microbiol Biotechnol 58:663–668

    Article  CAS  Google Scholar 

  9. Lin H, Bennett GN, San KY (2005) Chemostat culture characterization of Escherichia coli mutant strains metabolically engineered for aerobic succinate production: a study of the modified metabolic network based on metabolite profile, enzyme activity, and gene expression profile. Metab Eng 7:337–352

    Article  CAS  Google Scholar 

  10. Donnelly MI, Millard CS, Clark DP, Chen MJ, Rathke JW (1998) A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid, and ethanol. Appl Biochem Biotechnol 70–2:187–198

    Article  Google Scholar 

  11. Jantama K, Haupt MJ, Svoronos SA, Zhang XL, Moore JC, Shanmugam KT, Ingram LO (2008) Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol Bioeng 99:1140–1153

    Article  CAS  Google Scholar 

  12. Vemuri GN, Eiteman MA, Altman E (2002) Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli. Appl Environ Microbiol 68:1715–1727

    Article  CAS  Google Scholar 

  13. Andersson C, Helmerius J, Hodge D, Berglund KA, Rova U (2009) Inhibition of succinic acid production in metabolically engineered Escherichia coli by neutralizing agent, organic acids, and osmolarity. Biotechnol Prog 25:116–123

    Article  CAS  Google Scholar 

  14. Warnecke T, Gill RT (2005) Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb Cell Fact 4:25

    Google Scholar 

  15. Yedur S, Berglund KA, Dunuwila DD (2001) Succinic acid production and purification. U.S. Patent 6,265,190

  16. Huh YS, Jun YS, Hong YK, Song H, Lee SY, Hong WH (2006) Effective purification of succinic acid from fermentation broth produced by Mannheimia succiniciproducens. Process Biochemistry 41:1461–1465

    Article  CAS  Google Scholar 

  17. Schügerl K (2000) Integrated processing of biotechnology products. Biotechnol Adv 18:581–599

    Article  Google Scholar 

  18. Cao N, Du J, Gong CS, Tsao GT (1996) Simultaneous production and recovery of fumaric acid from immobilized Rhizopus oryzae with a rotary biofilm contactor and an adsorption column. Appl Environ Microbiol 62:2926–2931

    CAS  Google Scholar 

  19. Meynial-Salles I, Dorotyn S, Soucaille P (2008) A new process for the continuous production of succinic acid from glucose at high yield, titer, and productivity. Biotechnol Bioeng 99:129–135

    Article  CAS  Google Scholar 

  20. Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26:100–108

    Article  CAS  Google Scholar 

  21. Andersson C, Hodge D, Berglund KA, Rova U (2007) Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli. Biotechnol Prog 23:381–388

    Article  CAS  Google Scholar 

  22. Donnelly MI, Sanville-Millard CY, Nghiem NP (2004) Method to produce succinic acid from raw hydrolysates. U.S. Patent 6,743,610

  23. Vemuri GN, Eiteman MA, Altman E (2002) Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions. J Ind Microbiol Biotechnol 28:325–332

    Article  CAS  Google Scholar 

  24. Lin H, Bennett GN, San KY (2005) Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metab Eng 7:116–127

    Article  CAS  Google Scholar 

  25. Lee SJ, Song H, Lee SY (2006) Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl Environ Microbiol 72:1939–1948

    Article  CAS  Google Scholar 

  26. Sanchez AM, Bennett GN, San KY (2005) Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab Eng 7:229–239

    Article  CAS  Google Scholar 

  27. Foster JW (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2:898–907

    Article  CAS  Google Scholar 

  28. Lin SKC, Du C, Koutinas A, Wang R, Webb C (2008) Substrate and product inhibition kinetics in succinic acid production by Actinobacillus succinogenes. Biochem Eng J 41:128–135

    Article  CAS  Google Scholar 

  29. Corona-González RI, Bories A, González-Álvarez V, Pelayo-Ortiz C (2008) Kinetic study of succinic acid production by Actinobacillus succinogenes ZT-130. Process Biochem 42:1047–1053

    Article  Google Scholar 

  30. van Maris AJA, Winkler AA, Porro D, van Dijken JP, Pronk JT (2004) Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: possible consequence of energy-dependent lactate export. Appl Environ Microbiol 70:2898–2905

    Article  Google Scholar 

  31. van Maris AJA, Konings WN, van Dijken JP, Pronk JT (2004) Microbial export of lactic and 3-hydroxypropanoic acid: implications for industrial fermentation processes. Metab Eng 6:245–255

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of Norrbottens forskningsråd (The Research Council of Norrbotten) and the Kempe Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrika Rova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, C., Petrova, E., Berglund, K. et al. Maintaining high anaerobic succinic acid productivity by product removal. Bioprocess Biosyst Eng 33, 711–718 (2010). https://doi.org/10.1007/s00449-009-0393-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-009-0393-y

Keywords

Navigation